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Chapter 1

Introduction

In this first chapter of the thesis we are going to define the main objects of interest and our main
goal which is the description of the center of an enveloping algebra associated to an affine Kac-
Moody algebra.

A very important class of groups is the one of loop groups. Given G a connected algebraic
reductive group over the complex numbers, we consider its loop group LG. It may be viewed as
the group formed by the maps from the pointed formal disc D* — G and it is defined as the group
functor

LG:CAlg — Grp  LG(R) = G(R((t)))

Where R stands for an arbitrary C algebra and R((t)) is the algebra of Laurent series with
coefficients in R. If the group is affine then it can be proved that LG is an ind-scheme.

In order to study the representation theory for loop groups it is natural to investigate the rep-
resentation theory for their Lie algebras.

Let g = Lie(G), since the group we are considering is affine we have

g(R) = g ® R =ker(G(R[e] — G(R))
We easily deduce that that Lie(LG) = g((t)) =: Lg or more precisely

Lie(LG)(R) =: Lg(R) = g(R((1))) = g @ R((t))

We are interested in the C points of this Lie algebra which we will continue denotig by Lg or
g((t)). Note that the bracket here is simply determined by the bracket on g, extended by C((t))-
linearity. In the study of the latter algebra it is particularly interesting to study the representation
theory of its central one dimensional extension §i. The following proposition, that we will not
prove, holds.

Proposition 1.0.1. Let g be a simple Lie algebra over the complex numbers. Then the second cohomology
group H?(Lg, C) is one dimensional and generated by the cocycle

cg(X®Ff,Y® g) = Kkq(X,Y)Res¢—o(fdg)



where « is the killing form on g while f and g are two Laurent series with coefficients in C. Since this
group classifies isomorphism classes of central one dimensional extensions of Lg we obtain that they are in
correspondence with C.

Definition 1.0.1. Let g be a simple complex Lie algebra and k € C a complex number. We define
the affine Kac-Moody algebra (or simply the affine algebra) §x to be the central extension of Lg
determined by the cocycle k¢, where ¢ is the cocycle of the preceding proposition. It satisfies the
natural exact sequence

0-1C—-gc—Lg—0

As a vector space we have
@k = Lg ®1C

while the bracket is defined through the formula
Xef,Y®gl=I[X,Y] ®fg—kkg(X, Y)Resi—o(fdg)1 (1.1)

We will sometimes write for convenience kky = K, this is of course an associative form on g
since it is a scalar multiple of the Killing form. This construction is available also for a general Lie
algebra g with an associative symmetric form «, the hypothesis of g being simple bounds us to
consider only multiples of the Killing form.

Remark 1.0.1. The affine algebra gy posses two additional natural structures.

e It is in a natural way a topological vector space, with the topology induced by the vector
subspaces g ® tNg[[t]] with N € Z;

e It carries a natural Aut © module structure. Indeed since the bracket on Lg is C((t)) linear
Aut O naturally acts on it along the factor C((t)). On the other hand the cocycle defining the
affine algebra « is invariant under such an action since the residue Resi_ofdg is invariant
under automorphisms. The action of Aut O extends therefore to the affine algebra §y, it
naturally induces an action of its Lie algebra Der O.

We are interested in the the category of §i representations which are smooth (i.e. tNg[[t]] acts
locally trivially) and in which 1 acts as the identity.

Definition 1.0.2. A module V over gy is said to be smooth if 1 acts as the identity and if, for every v €
V, there exists a sufficiently large natural number N such that the subalgebra tNg[[t]] annihilates
%

tNgllt)] v =0

Our goal is to describe the center of the category of smooth gx modules, we will see that this is
the same as computing the center of a certain associative algebra. This is of crucial importance in
studying the representation theory of gix. Every central element acts intertwining with the action
of gx on any given module. In particular on irreducible finite dimensional representations the
center acts like the multiplication of a character. The study of the center then permits for instance
to distinguish finite dimensional representation through the associated character.

In the following paragraph we briefly recall what the center of an abelian category is and ex-
plain that it essentially coincides with the notion of the center of an associative algebra when our
category is the abelian category of modules over an algebra.



1.1 The center of an abelian category

Recall the definition of the center of an abelian category, which is by definition the set of endomor-
phisms of the identity functor.

Definition 1.1.1. Let C be an abelian category. If the natural transformations from the identity
functor to itself form a set we call it Z(C) the center of the category. An element of the center of C
is therefore a collection of endomorphisms e for each object M € C such that for any morphism
@:M —> Nwehaveeno@ = @oepm.

It is easy to see that, when it is a set, the center of an abelian category is an abelian ring, if
moreover the category is k-linear for some field F the center is easily seen to be a F commutative
algebra. Indeed, given two elements e, f € Z(C), since C is abelian, it is easy to see that (e + f)p =
em + fm is still an endomorphism of the identity functor and the same is true for the composition
(e-f)m = emofm. Using the fact that e, f are central and that C is abelian one can easily prove that
these operations define the structure of a commutative ring. The definition of scalar multiplication
is done similarly.

Moreover, by definition, we have a natural action of Z(C) on any object M € C, meaning a
morphism of algebras Z(C) — Endc (M, M). We consider now C linear categories, so that Z(C) is
a C algebra.

Consider the scheme S = Spec (Z(C)) and a closed point x € S which gives a homomorphism
px 1 Z(C) — C. We may consider the fullsubcategory Cy of C whose objects are the objects in C for
which Z(C) acts accordingly to the character py.

As an example consider g a simple finite dimensional Lie algebra over C. The abelian category
of g-modules is equivalent to the category of left U(g) modules.

We now describe the center of this category: we claim that it equals the center Z(g) of the
associative algebra U(g).

Indeed any central element defines, through its action on modules, a central element of the
category and we obtain a morphism Z(g) — Z(C). This is easily seen to be injective since for
any element z € Z(g) its action on the module U(g) is not trivial. On the other hand consider
an element e € Z(C), consider its action on the module U(g) and in particular the element e(1).
Since e is central and right multiplication on U(g) is an endomorphism of g-modules e(1) satisfies
e(x) = e(1-x) =e(1) - x but by definition e must commute with the action of U(g) so we also have
that e(f) = e(f - 1) = - e(1) we deduce from this that e(1) € Z(g) and it is quite easy to see that
e(1) determines e on all modules.

In this particular case if we focus on finite dimensional representations we have that the cat-
egory is ‘generated’ by irreducible representations, on which the center acts by mulitplication
by scalars. The category of g modules of finite dimension is generated by the full subcategories
(g-mod)y defined above, for x a closed point of Spec Z(g). In this sense g-mod may be thought of
as ‘fibering” over Spec Z(g).

1.2 The completed enveloping algebra
Analogously to the finite dimensional case, in which given a Lie algebra g we consider its envelop-

ing algebra U(g) we try to define an associative algebra whose left modules correspond to smooth
representations of §y. It turns out that actually we must consider a topological associative algebra



and its continuous modules. It is clear that the classical enveloping algebra U(§x) does not suffice
for this purpose, but a slight modification of it will do the trick.

The condition of 1 acting as the identity may be imposed by considering first the algebra
Uk (8) == U(gx)/(1 —1). Consider next the topology on Uy (§) induced by the left ideals I, :=
U(gx)(tNgllt]]). It may be checked that the product on the enveloping algebra is continuous for
this topology and therefore may be extended to a product on the completed enveloping algebra

U (@) = lim Uy (8)/1n
Note that this is a limit of Uy (§) modules and not a limit of algebras. Anyway, by the continuity
of the bracket, one may extend it to U, (§). This is a complete topological algebra.

Proposition 1.2.1. The category of smooth @, modules is equivalent to the category of smooth left U, (§)
modules:

@k' mOdSmooth = GK(@)' mOdcont

Proof. We prove that to give the structure of a smooth §x module on a C vector space V is equiv-
alent to give a structure of left ﬂK(ﬁ) smooth module. Given a smooth gx module M it gains
naturally a structure U(gx)/(1 — 1) module (since 1 acts as the identity on M). In addition the
smoothness condition on gy implies that M with the discrete topology is a continuous U (g )/(1—1)
module for the topology induced by the ideals I,, and hence a U, (§) continuous module.

On the other hand consider a continuous ﬂK(@) module M. The continuous homomorphism
of Lie algebras

ﬁk — t[K (/Q\)

induces a structure of g§x module on M. The verification that the above constructions are one the
inverse of the other is trivial. O

Notice that while U, (@) is a left module over itself, it is not a smooth module. Indeed a smooth
module over a topological algebra is to be intended as a vector space equipped with the discrete
topology and with a continuous action for this topology. U, (§) does not satisfy this continuity
condition.

Fortunately for us, the quotients by the left ideals I,,, which are always defined to be as the left
ideals generated by tNg[[t]], really are continuous modules.

Proposition 1.2.2. The center Z,(§) of the category of G smooth modules equals the center of the completed
enveloping algebra U, (8).

Proof. It is clear that every element of Z(U, (8)) defines an element of Z,(g) and that we obtain a
morphism

Z(U«(8)) — Z«(8)
We now prove injectivity and surjectivity.

As injectivity is concerned let x € Z(CIK (8)) be a central element which is sent to 0 through
the above morphism. Consider its action on the smooth modules ﬂK(ﬁ) /1, which are all trivial
by hypothesis. Then we have that x = x - 1 € I, for all n € Z>y, it is easy to check though that
NI = 0 and therefore x = 0.
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On the other hand consider an element e € Z,(g) in the center of the category. Consider
also e, := e(1) € ﬂK(@)/In: this collection provides us with a unique element e(1) € ﬁK(ﬁ)
since by hypothesis e is central and the projections 7 : flK @)/, — ﬂK (8)/Im are morphism of
representations. As in the case of the example in the previous paragraph it is not difficult to prove

that e(1) is central and that determines completely e.
O

Thanks to the above proposition we will call the center of the enveloping algebra Z(g§). The
goal of the thesis is the description of this center as k € C varies.

It turns out that Z,(g) is trivial almost for all complex numbers except for a specific value of k
we will focus on the description of the center in this non-trivial case.

We are interested in a geometric description: as we noticed before the affine algebra gy carries
a natural Aut O action. This action extends to U(gx) and ultimately to flK(ﬁ) since the subalge-
bras tNg[[t]] are actually invariant under the Aut O action. By geometric we mean a description
which takes into account this action and states an isomorphism between Z.(g§) and some algebra
of functions over a space related to the disc.

We will focus on proving the second part of the following theorem due to Feigin and Frenkel,
following [Fre07].

Theorem 1.2.1. Let g be a simple Lie algebra over C. The following description for the center of the
completed enveloping algebra of the affine Kac-Moody algebra §,. holds:

o Ifx # —TKg the center Z (@) is trivial (i.e. isomorphic to C);
o Ifk = —JKg (we denote k. := — Iy the critical value) then

1. The center Z_ (@) contains a free polynomial algebra in an infinite number of variables which
topologically generates it. In particular it is isomorphic to the completion of a polynomial algebra
in an infinite number of varibles;

2. There exists a natural (Aut O, Der O)-equivariant isomorphism
Zy () =ClOpig(D7)]
with the space of functions on the space of - G-Opers on the punctured disc D*.

Here "G stands for the Langlands dual group of G while we postpone the definition of the
space of Opers to the last section. We remark that actually part 2 of the second statement implies
part 1: it is not difficult to algebraically describe C[Op:.g(D*)] as the completion of a polynomial
algebra. We anyway state these results separately to remark the algebraic nature of the first state-
ment and the geometric nature of the second one.

1.3 Strategy of the proof and organization of this work
In this section we give a brief outlook of how the proof of Theorem 1.2.1 will be carried out

throughout the thesis. We will make references to various constructions, the reader may jump
through the chapters in order to take a look at the various definitions.

11



The entire thesis revolves around chapters 2-8 of Edward Frenkel’s book ‘Langlands Corre-
spondence for Loop Groups’ [Fre07]. Our goal is mainly to follow Frenkel’s proof of Theorem
1.2.1, paying specific attention and writing down all the details and the computations that do not
appear in the book. We will, from time to time, omit some proofs and refer to the book, especially
for the ones that are already written in detail.

Throughout this discussion we assume that any simple Lie algebra g considered is equipped
with a chosen maximal toral subalgebra ) and a chosen basis for the root system O relative to h
which induces a decomposition g =n; & h @ n_. We call b := n_ @ h the upper Borel subalgebra
and b_ = n_ @ b the lower Borel subalgebra.

The vertex algebra V. (g)

We start by considering a different algebraic object from the completed enveloping algebra: the
vertex algebra V. (g). Vertex algebras are algebraic structures which arise quite naturally in this
context. A vertex algebra V is essentially a vector space equipped with infinitely many products,
indexed by the natural numbers Z and denoted by A,,B for A, B € V, which satisfy certain axioms.
We are able to attach to any affine algebra g« a vertex algebra closely related to it, we call it Vi (g):
the vacuum Verma module. It is a §« module constructed as follows

Vilg) = Indiiy)16c,ClO)

where C|0) is the trivial g[[t]] & C1 module where g[[t]] acts like 0 and 1 acts like the identity.

The structure of vertex algebra is induced from the structure of g, module. This object is way
easier to study than the complete enveloping algebra: first it has a simpler description as a g«
module, and second the structure of Vertex algebra allows to simplify a lot of calculations.

This is all done in chapter 3: we introduce the basic theory of vertex algebra and define both
Vi (g) and the Virasoro vertex algebra, the latter is a very important example of vertex algebra as
well as it is crucial for our goals.

t]]@C1

There is a natural notion of center of a vertex algebra and it turns out that the center of V(g),
which we call {«(g), coincides with the space of g[[t]] invariants

CK(Q) = VK(g)g[[tH

it has a natural structure of commutative C algebra induced by the product A - B = A_;B.

It is quite natural to start studying the center of the vertex algebra in order to obtain some
information about the center of U, (8). In order to describe it we consider the natural filtration on
Vi (g) induced by the classical PBW filtration. The associated graded space has a natural structure
of commutative algebra. We are able to prove an isomorphism

g7 Vie(g) =~ C|g"[[t]]

with the ring of regular functions on g*([t]]. This an algebra isomorphism which intertwines with
the action of Aut O on both spaces. From this isomorphism we obtain a natural embedding

([t

gr (Vi(9)*™) = gr ¢ (g) = C[g" (18] " = Inv g*[[1]

Note that in contrast with the finite dimensional case it is far from being obvious and it is actually
false in general that this embedding is an isomorphism.

12



We focus on the proof of the following theorem which is the vertex algebra analogue of theorem
1.2.1:

Theorem 1.3.1. Let g be a simple Lie algebra over C and let V(g) the vertex algebra associated to the affine
Kac-Moody algebra g, of level . Then the following hold:

o If k # K the center ((g) is trivial (i.e. spanned by |0));
* If kK = k. we have

1. The immersion gr C« (g) — Inv g*[[t]] is an isomorphism and therefore C(g) is a free polyno-
mial algebra in an infinite number of variables;

2. The center C(g) of V. (g) is isomorphic in an (Aut O, Der O) equivariant way the the algebra
of functions on the space of G Opers on the formal disc D.

C(g) = ClOpi(D)]

From V,(g) to CI-K(@)

Before diving into the proof of theorem 1.3.1 we explore in more detail the connection between
V(g) and Uy (§). We define a functor which associates to any vertex algebra V a Lie algebra U(V).
The latter is spanned by elements of the form A[,; wit A € V and should be understood as a formal
analogue of the Lie subalgebra of End V spanned by the endomorphisms induced by the various
n-products A, (-) € End V. The bracket on U(V) is defined following the vertex algebra axioms.
This construction is the key ingredient to pass from the vertex algebra Vi (g) to the completed
enveloping algebra U, (§).
We construct and prove in theorem 4.2.1 that there exists an homomorphism of Lie algebras

U(Vi(g)) — Uk(@)

which has two crucial properties. First it is possible, using only the structure of a vertex algebra,
to build a complete topological associative algebra from U(V) which we call U(V). In the case of
V = Vi (g) the algebra to homomorphism above induces a continuous homomorphism of algebras
U(Vi( g)) — U, (§) which we prove in theorem 4.2.2 to be an isomorphism. Therefore the vertex
algebra Vi (g) contains all the information of the enveloping algebra. Secondly we find that the
composition

U(Ck(g)) = U(Vi(g)) — Uc(8)

has image contained in the center. Thus if the center of the vertex algebra is not trivial we can
construct various central elements in the enveloping algebra. We prove a more precise statement:
in corollary 4.6.2 we prove that under the assumption that point 2 of theorem 1.3.1 is true we are
able to deduce that {(g) topologically generates Z,_(g§) (only at the critical level). This is done by
considering various graded spaces associated to Z._(g§) and describe them as algebras functions
on certain geometric spaces related to g*[[t]].

On the other hand it is shown in [Fre07] that the third part of theorem 1.3.1 implies the gometric
description of the center of the enveloping algebra.

To sum up we reduced ourselves to treat two different (although related) problems: the first
one is to show that gr¢(g) = Inv g*[[t]] and the second one is to identify ((g) with the algebra

13



of functions on the space of Opers. From this point onward we will forget about the enveloping
algebra and restrict our attention to the vertex algebra setting.

Everything discussed so far is treated in chapter 4. We start with the construction of U(V) as
well as the definition of its Lie bracket, continue with the identification of lNlK(@) with ﬂ(VK( g))
and finally we study the center.

Invariants

We begin our quest to solve our two problems with facing the equality gr {(g) = Inv g*[[t]]. A
good starting point is surely an efficient description of the space Inv g*[[t]].

We start with the finite dimensional case. It is known that given a simple Lie algebra g the space
of invariants C[g*]® is a free polynomial algebra generated by certain homogeneous polynomials

Pi,...,Pywith 1 = rankg. It is reasonable to think that a description of C|[g*[[t]]] ollt)] may be
deduced from this description of C[g*]®.

This is indeed the case. We approach this problem using the formalism of Jet Schemes. To any
scheme of finite type X over C we associate another scheme called JX, the C points of the latter
are exactly the C[[t]] points of X. Thus to formally define g*[[t]] as a scheme we consider the Jet
scheme Jg*. This formalism allows us to prove in theorem 4.5.2 that

Inv g*[[t]] = C[Pynli=1,... ,1m<o0

where the P; ;, are certain polynomials which are easily described from the polynomials P;.

This description of Inv g*[[t]] is still not enough. We move a little bit our problem to an anal-
ogous one which concerns a Verma module for §... The motivation behind this argument lies in
the fact that this Verma module is easier to describe, as we will see in the next section.

Let iy := n, @ tg[[t]] and let b, := b, @ tg[[t]] = h @ fi,.. Consider the trivial b & C1 module
Co where E+ acts like 0 and 1 acts like the identity. Define the Verma module M . as the induced
module

Pp— @KC
MQ)KC = IndE+@CICO

notice that this is a little bit larger than V,_(g). Indeed there is a natural surjective §i, linear
morphism My ., — Vi_(g). The problem of comparing the graded space of the g[[t]] invariants
on V., (g) with the space of g[[t]] invariants of the graded space gr V,(g) translates in this set-

ting to the problem of comparing gr (MgfK ) with (grMo, . ) ®*. The common point of these two

c

problems is the following commutative diagram:
gr (MS),) ———— gr (V. (0))

|

gr (Mo, )" ——— gr (Vi (9))*"

We are able to describe (grMo,. ) o identifying gr M, . with the rings of functions on a cer-
tain geometric space, and a reasoning analogous to the one needed to compute Inv g*[[t]] allows
us to completely describe it and to show that the lower horizontal map is surjective.

14



Notice that if we could prove that the left vertical arrow is an isomorphism we could easily
deduce that the right vertical arrow is an isomorphism as well. Thus we reduced ourselves to

describe the space of invariants Mj"_ .
yhe

Free field realization

A common tool to face both the problem of describing Mg}c and the problem of giving a geometric
interpretation of ((g) is the so called free field realization of V,_(g). It consists in an embedding
of vertex algebras of V_(g) into a free field algebra which is a kind of vertex algebra particularly
easy to study.

The idea behind this construction is found in the finite dimensional case: a way to construct
the so called Harish-Chandra homomorphism

Z(g) — CIlp*]

which is essential to identify the center of the classical enveloping algebra Z(g) with the ring of
functions on h* invariant by the action of the Weyl group, is the following.

Consider G to be the simply connected Lie group with g as a Lie algebra and let N, H, N_ be
the subgroups defined by the subalgebras n., h, n_ respectively. Consider the left action of G on
the quotient variety G/N_. This action induces an action of g by vector fields on any open subset
of G/N_, in particular on its open B, = N x H orbit U := B - [1] ~ B.. This action induces an
homomorphism of Lie algebras

g — Vect(N, x H)

which actually factors through the Lie subalgebra Vect(N_. ) ® ((C[N e b) C Vect(N, x H) where
we identify h C Vect(H) with the constant right invariant vector fields. This homomorphism
induces an homomorphism of associative algebras

U(g) — D(N,) ® Symbh =D(N,) @ C[h*]

where D(N, ) is the algebra of differential operators on N_. This morphism turns out to have two
remarkable properties: it is injective and it induces an homomorphism Z(g) — C[h*].

We construct the infinite dimensional analogue of this embedding and recast it in the language
of vertex algebras. We describe in theorem 5.5.1 an homomorphism of vertex algebras

Vi (9) = My ® 1o

where M, should be understood as the vertex algebra analogue of an algebra of differential opera-
tors while 7 is what is called an abelian vertex algebra and should be considered as the analogue
of C[h*] in this setting. In theorem 6.1.1 we prove that the above morphism is actually an embed-
ding, considering the analogous statement for the finite dimensional case.

The whole construction is highly non trivial and presents various technical difficulties but on
the other hand it highlights the role of the critical level in the study of affine algebras §.

We are going to see in what comes next how this construction helps us to move forward in the
proof.
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Wakimoto modules

First we are going to attack the description of Mg}t

There is a natural notion of a module over a vertex algebra. We prove in theorem 6.3.1 that
the notion of a V,(g) module and the notion of a §« smooth module coincide. In addition, given
an homomorphism of vertex algebras V.— W and a W module M, there is a canonical induced
structure of V module on M obtained pullbacking the action of W. With this properties in mind
we see that any My ® o modules is automatically an g, module.

The algebras My and 7 are easy to describe. My may be thought as generated by elements
Aoy Of with &, 3 € @4, n,m € Z and commutation relations [a« n, a}g’m] = 0u,p0n,—m. On
the other hand 71y can be though as generated by elements b; , withi =1,...,1and n < 0 which
commute with each other. This description allows one to easily construct a lot of modules over
these algebras.

We identify a wide class of g, modules, the so called Wakimoto modules. These are obtained
considering a My ® o modules of the form L ® N, where L is an My module and L is a 7o module,
with the structure of V. (g) module and hence of a §«, module. The free field realization is de-
scribed by rather explicit formulas on the generators (see theorem 5.5.1), and therefore Wakimoto
modules are not so difficult to describe.

Wakimoto modules come in the picture in the following way. In proposition 6.4.1 we establish
an isomorphism of the Verma module M . with a certain Wakimoto module which we call WJr ke
This identification, together with the exp11c1t formulas typical of Wakimoto modules allow us to

compute the space of invariants M
In particular we notice that all the modules considered so far are actually modules for the
extended affine algebra @ := @«. x CLo where L, is the operator acting on g, as —td,. We are

able to compute the character of the space of invariants M with respect to the action of Ly, as

yKe

well as the character of the invariants of the graded space (gr MOYKC)M. We find that they are
actually equal and therefore the inclusion

gr (M5 ) = (gr Moy, )"

is actually an isomorphism.
This allows us to conclude that gr {(g) = Inv g*[[t]] as remarked before and therefore to de-
scribe the center of the completed enveloping algebra as the completion of a polynomial ring in

an infinite number of variables. The definition of Wakimoto modules and the description of Mg;c
may be found in chapter 6.

Opers and Screening Operators

What remains to do is the identification of {(g) with the algebra of functions on the space of Opers.
The space of Opers is a classifying space for certain connections on the trivial “G bundle over the
formal disc D = Spec C[[t]]. This space is described in the first part of chapter 8. After defining the
space of Opers we immediately see that its algebra of functions is isomorphic to a free polynomial
algebra in a countable number of variables

(C[OPLG (D)] = C[Vi,n]izl ey Lim<O
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Notice that as commutative algebras it is obvious, by what we have done so far, that ((g) is
isomorphic as a C algebra to the algebra of functions on Opig(D). Our goal is to obtain a more
canonical isomorphism, in particular we focus on constructing a Der O equivariant isomorphism.

Recall that the group of automorphisms of the formal disc Aut O, and hence its Lie algebra
Der O, naturally act on the Lie algebra g, for any value. This action induces a vertex algebra
action of Der O on V,(g) and hence a natural action on the center {(g). On the other hand the
space of Opers is defined over the disc itself and therefore carries by its very definition an action
of the group Aut O and therefore its algebra of functions carries a natural Der O action. The
isomorphism we present is compatible with these actions. In the thesis we focus on the action of
Der O but it is possible to extend the result considering also the action of the group Aut O, whose
action is anyway strictly connected to the action of Der O.

To proceed with the proof we introduce an auxiliary space: the space MOpr g (D) gen of generic
Miura Opers on the formal disc. It turns out that MOp1g(D)gen fibers over Opig(D) and it is
actually an N, torsor over it. Under a specific trivialization MOprg(D)gen >~ Oprg(D) x Ny we
may write

C[MOpiLg(D)gen] = ClOprg(D)] ® C[N,]
and

ClOpLg(D)] = CIMOpig(D)IN+ = CIMOpig (D)™

A natural way to describe the algebra C[Op: g (D)] in terms of the algebra CIMOp:.g(D)gen] is
to write down the infinitesimal action of the generators e; of the Lie algebra n. . This allows us to
describe the algebra of functions on Op. g (D) as the intersection of the kernels of the operators e;
inside C[MOpig(D)gen].

To link these construction with the vertex algebra setting we establish a Der O equivariant
isomorphism between

1o ~ C[MOprg(D)genl

We find that in a completely analogous way with respect to the finite dimensional case, the
center ((g) is mapped through the free field realization into 7y:

C(g) — mo

Thus we embedded, in a Der O equivariant way, the center ((g) and the algebra C[Op.g(D)]
in the same ambient space. All we are left to do is to show that they are equal. This is done by
considering another description of the operators e; on C[IMOpig(D)genl.

In chapter 7 we introduce the so called intertwining operators S; which are g, linear mor-
phisms
Si My ®@me — Wo

,0,Kc

where Wo 0,x. is a certain §«, module described in the same chapter. We show that the subalgebra
V.. (g) lies in the intersection of the kernels of these operators. In partlcular the center ((g) is

contained in the intersection of the kernels of Vi : my — 7o C WO‘O‘KC which are obtained by
restricting S; to 7.

g) C ﬂkervi
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Finally thanks to the explicit description we give of all these operators we find at the end
of chapter 8 that the operators V; coincide with the operators e; under the isomorphism 7y =~
C[MOpiLg(D)genl. In particular we obtain an Der O equivariant immersion

C(g) — C[Oprg(D)]

To conclude the proof we use the equality gr ¢(g) = Clg*[[t]]]*" to compute the character of
C(g) under the action of Ly = —t0; € Der O. We compute explicitly the character of C[Op.g(D)]
and a comparison of the two characters shows that they are actually equal, so the above inclusion
must be an isomorphism.
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Chapter 2

Preliminaries

In this first chapter we give the basic definitions, notations and results used in the rest of the thesis.
We focus on the theory of Lie algebras and on Algebraic Geometry.

2.1 Lie Algebras

Throughout the thesis the symbol g will stand for a simple finite dimensional Lie algebra over C.
Given a fixed maximal toral subalgebra h C g we consider the decomposition of g in root spaces
g = Bacodu«, here @ C h* denotes the set of roots, these spaces are one dimensional. 1 = dimc b
will be called the rank of g and given a basis {«1,..., %1} = A C ® we will denote by e; € gy, a
fixed set of generators of the spaces gq;.

There exists unique elements f; € g_«, and h; € b such that the triple e, hy, f; is an sl,-triple,
h; does not depend by the choice of e; but f; does. We will always The numbers ai; = «;(h;) are
called the Cartan integers. The matrix (ajj) is called the Cartan matrix, it is positive definite and
characterizes g. Moreover given a symmetrizable positive definite matrix one can reconstruct a
Lie algebra associated to it.

The elements e, hi, f; are a set of generators and g is isomorphic to the free Lie algebra gener-
ated by them subjected to the following Serre Relations:

(81) [hi,hyl =0

(S2) [es, fj] = hidy

(53) [hi, ej] = Clij ej and [hi,fj] = —Cli]'fj

(S%) ad(ei) ™ (e) =0

(S5) ad(fy) "+l (f;) =0

This explicit description allows us to define an involution t for such algebras: t(e;) = fi, L(hi) =
—hi, (fi) = ey

We call "g the Langlands dual Lie algebra it is defined as the algebra given by the transposed
Cartan matrix i.e. Laij = aji. Some further notation:
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* We will denote by w” the element of  defined by the equations oj (W) = 8ij;
» We will denote by p" the element of ) defined by the equations o (p¥) =1Vi=1,...,1, we
naturally have p¥ = Y, wy.
2.1.1 Principal Gradation, exponents

We states some results concerning the exponents of a simple Lie algebra g and their relation to the
ring of invariants C[g*]? we refer to [Kos63].

Consider the element p_; € g defined to be the sum of the generators for the lower nilpotent
subalgebran_:p_; =} | fi.

Remark 2.1.1. There exists coefficients m; such that (}_; mie;, 2pY,p_1) is an s, triple. Indeed
for every choice of m; we have that 2pY, 2 imiei] =2) , myie; so we just have to choose them in
order to have 2pV = [>_; miei, p—1] = Y ; myhy. This is possible since h; is a basis of h.

Definition 2.1.1. The decomposition

92@91
i

induced by the adjoint action of p" is called the principal gradation of g. Notice that g; is exactly
the direct sum of root spaces for roots of height i. In particular

b:@gi:@bi

i>0 i>0

The morphism ad(p_1) : bi+1 — b; is injective, and therefore we may find a subspace V; C b;
such that

by = ad(p_1)bit1 & V4

Definition 2.1.2. The natural numbers i such that V; # 0 are called exponents of g, and dim V; is
called the multiplicity of the exponent i. Note that Vy = 0 and define

V= ViCn

In addition we define
E:={d,...,di}
the set of exponents counted with multiplicity.
Finally we state the theorem linking the exponents of g to the algebra of invariants.
Theorem 2.1.1 (Kostant). The ring of invariants
Clg™]®

is freely generated by homogeneous polynomials Py : 1 =1,...,1. The degree of P; is exactly d; + 1.
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2.1.2 Affine Kac-Moody algebras

We extend the definition of the affine Kac-Moody algebra in the non-simple case. Consider any
Lie algebra g and an invariant inner product k on it. Then the following formula defines a cocycle
in H2(Lg, C)

c(X®f,Y®g) =«(X,Y)Resi—ofdg

the associated central extension in called the affine algebra g.. When g is simple it will be
called affine Kac-Moody algebra.
Representations of affine Kac-Moody algebras

We will often consider representations of the affine Kac-Moody algebra g, which are modules for
the extended algebra

@:( = ﬁK el Lo

where L is the grading operator acting on §« by Lo = —t9¢. We require additionally that in these
representations the action of h @ CL, is semisimple with finite dimensional eigenspaces, the latter
will be also called weight spaces. We will denote weights by couples (A, u) where A : h — Cis a
linear functional and p € C is the value of the eigenvalue relative to —Ly = t0;.

Note that §, with the adjoint representation of § is a module with the above properties (actu-
ally one should consider the subalgebra glt, t 1] @ C1) its weight spaces are of the form

(@K)(oc,n) =0a® t
We define the set of positive roots of §i as follows
O, ={(yn):aec® ,n>0U{(—,n):aec®, ,n>0U{0,n):n>0}

The subspace relative to the positive roots is the Lie subalgebra fi; := n; & tgl[t]].

2.2 Algebraic Geometry

As algebraic geometry is concerned we will work in the category Sch¢ of Schemes over C, we will
give in this section an overview of all the language and the tools we will need in the thesis.

2.2.1 Schemes as functors

The natural embedding Alg2” — Schg is fully faithful, its essential image will be called the cat-
egory of affine schemes. Using the fact that every scheme admits an open cover of affine sub-
schemes one can prove a stronger version of the Yoneda Lemma:

Proposition 2.2.1. The restriction of the Yoneda Embedding Schc — Fun (Sch¢?, Set) to Fun (Alg., Set)
Schc — Fun (Alg, Set) X = (R— X(R) = Hom¢(SpecR, X))

is still fully faithful.
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The above proposition is true in a more general setting, making the substitution C — R for a
C-algebra R. We will call a functor F : Alg. — Set representable if it is naturally isomorphic to a
scheme X € Schc. In virtue of the above proposition we will make no difference between a scheme
X and its functor of points R — X(R). We may also talk of functions in terms of functors.

Definition 2.2.1. Let X be a functor X : Alg. — Set. Define
CIX] = {f:X—>A1}

the set of natural transformations from X to the scheme A'. The multiplication and the addition
morphisms A" x A — A give the structure of a C algebra to C[X]. If X is a scheme then C[X] is
obviously equal to the ring of regular functions on X.

If the scheme X is affine (i.e. isomorphic to the spectrum of a C algebra) the Yoneda Lemma
provides us with a universal Element £x € F(X). Here we are identifying with a slight abuse of
notation X with its ring of functions, the difference will be clear from the context. In this case the
isomorphism ¢ : X — F is given by the following: if f € X(R) = Hom aig (X, R) then @r(f) =
F(f)(&x) where F(f) : F(X) — F(R) is the morphism associated to f by functoriality.

We list a couple of useful remarks:

* The category Sch¢ admits arbitrary fibered products. Given three schemes X, Y; Z and maps
Y — X, Z — X the functor of points associated to Y xx Z equals the functor R — Y(R) x x(g)
Z(R);

Sheaves for the flat topology

Representable functors have various nice property, the one we are interested in is the property of
being a sheaf for the flat topology. We follow [Mil17][Definition 5.65]

Definition 2.2.2. A functor F : Alg. — Set is said to be a sheaf for the flat topology if the following
axioms hold:

* (local) For all C-algebras R; fori =1,...,n the map F(Ry; X --- X Ry) = F(Ry) x -+ X F(Ry)
is an isomorphism;

¢ (descent) For any faithfully flat map R — R’ the sequence
F(R) — F(R") — F(R' ®& R')
is exact, i.e., the first map is the equalizer of the second couple of maps.

One can check that representable functors (coming from schemes) are sheaves for the flat topol-
ogy. Therefore when we are going to try to define geometric spaces (i.e. schemes) through functors
we are interested in functors that are sheaves for the flat topology. Fortunately there is a way to
associate to a functor a canonical flat sheaf.

Theorem 2.2.1. Let F be a functor F : Alg. — Set. Then there exists a couple (F,f) such that F* is a
sheaf for the flat topology and f : F — F< is a morphism which satisfy the following universal property:

for every other flat sheaf G and every morphism g : F — G there exists a unique morphism ¢ : F¢* — G
such that the following diagram is commutative:
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Such a universal object must of course be unique up to unique isomorphism.

Definition 2.2.3. A subfunctor F of a functor G is said to be a fat subfunctor if for every element
x € G(R) there exists a finite faithfully flat family R; (i.e. some R; with a faithfully flat morphism
R — TT;R;) such that the image of x in G(R;) belongs to F(R;) for each i. This is equivalent to asking
that G is the sheafification of F.

Proposition 2.2.2. Let F be a fat subfunctor of G. Then the canonical map F* — G is an isomorphism, in
particular for any flat sheaf H

Hom(F,H) = Hom(G, H)
2.2.2 Tangent space, vector fields

We define here the notions of the tangent space.

Definition 2.2.4. Let X be a C scheme (or any functor X : Alg. — Set). Let TX be the functor of
C-algebras defined by
TX(R) == X(R[e])

If X is a scheme of finite type TX is representable by a scheme of finite type over C. The natural
maps R — R[e] and (e = 0) : R[e] — R define morphisms

0: X—=TX and m:TX—= X

whose composition is the identity on X.
As an example consider X = Spec C[x1,...,xnl/(f1,...,fm) then
TX(R) = X(R[e]) = {(r1 + erf,...,mnery) : fi(r + er®) = fi(r) + e(r€, VFi(r)) = 0Vi}
The functor TX results therefore representable by the affine scheme
Spec Clxi, x{1/(fj(x), (x5, f5(x)))
so TX effectively corresponds with the intuitive notion of tangent space.
Definition 2.2.5. Given a C scheme X (or a functor of C algebras) a vector field on X is a morphism

v:X = TX suchthatmov =1idx
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The set of vector fields form naturally a C vector space. If X is affine of finite type one may check
that

Vect(X) = Der C[X]

Therefore for a general scheme X of finite type the sheaf of C-vector spaces U +— Vect(U) has a
natural local structure of a Lie algebra which induces a structure Lie algebra on the sheaf Vect.
This sheaf naturally acts on the sheaf of sections (through the action of Der C[U]).

One may intrinsically define a ‘bracket’ product on Vect(X) for any functor X, which if X is
sufficiently well behaved gives to Vect(X) the structure of a Lie algebra. We will omit this general
construction on limit ourselves to describe the Lie algebra of Vect(X) on the specific situations we
will encounter.

Anyway we may define an action of Vect(X) on the algebra C[X] as follows. Consider a func-
tion f and a vector field v define v - f as the composition

X Yy X T, Al e, Al

where & is the morphism defined on R points by TA'(R) > r + er® — r¢ € A'(R). This
definitions coincides with the ones we gave for the finite type case.

2.2.3 Group functors and Group schemes

We are going to give here the notions and tools we will use regarding algebraic group schemes.
We will focus on group schemes defined over C.

Definition 2.2.6. A group functor over C is a functor
G:Alg,. — Grp

An homomorphism of group functors is simply a natural transformation, which automatically has
to preserve the group structure.

If the underlying functor to Set is representable by a scheme G is called a group scheme. An
homomorphism of group schemes is an homomorphism of group functors, by the Yoneda lemma
it induces a morphism of the corresponding represented schemes.

All groups schemes we are interested in will be affine and algebraic (i.e. of finite type over C),
we will refer to them simply as algebraic groups. They are easily seen to be smooth.

From time to time we will encounter group schemes over C which are not of finite type, all
such groups will be anyway closely related to algebraic groups.

Definition 2.2.7. The Lie algebra of a group functor is defined to be the functor of R-algebras
g(R) := Lie(G)(R) := ker(G(R[e]) — G(R))

It is possible to define functorial maps
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g(R) x g(R) ———— g(R)
(1) ——2—— g(R)

R x g(R) ——— g(R)

Which make g(R) into an R module. If the group is algebraic g(C) is a finite dimensional C vector
space and there is a natural isomorphism

g(R) =g(C) &R
So g in this case is a vector space scheme.

Remark 2.2.1. To a morphism of group functors f : G — H is possible to associate a morphism
between the corresponding Lie algebras

Lie(f)(R)g(R) — b(R)  Lie(f)(R) = f(Rlel)jg(r)
This association is of course functorial.
Example 2.2.1 (vector spaces). Let V be a vector space over C. Consider the functor of C algebras
Va(R)=V®cR  1d®f= Vu(f): Va(R1) = Va(R2)

where f : Ry — R; is a morphism of C algebras.
The choice of a basis (v;)ic1 for V result in a functorial isomorphism V(R) = Rl so V, is actually
representable by a scheme. The functorial morphisms

Vo (R) x Vg (R) ———— V4 (R)

(%} ° Va(R)

R X Vg(R) ————  V4(R)

defining the structure of R module on V(R) induce morphisms of schemes V4 x Vq — Vo, C — V,
and A x Vo — V4. A scheme equipped with those map, with the appropriate commutative
diagrams will be called a vector space scheme

Example 2.2.2 (GL(V)). Let V be a complex vector space. Define GL(V) as the group functor
GL(V)(R) := GLr (V&)

where as in the previous example Vg := V ®c R for a C algebra R. Choosing a basis for V gives

the usual isomorphism of GL(V) with an open subscheme of A" therefore GL(V) is actually an
algebraic group.
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It’s easy to see that the automorphisms A € GL(V)(C[e]) which are the identity at € = 0 are
exactly those of the form
id+ €@ @ € EndV

for any @ € End V. With this expression we mean the automorphism of V @ Cle] given by
V+ew v+ ew+e(@(v) + ep(w))

This proves that Lie(GL(V))(C) = End V, and itis not difficult to extend this result to Lie(GL(V))(R) =
End RVR .

Definition 2.2.8. By an action of a group functor (or a group scheme) G on a functor (or a scheme)
Xwemean amap p: G x X — Xsuch that the following diagrams are commutative:

mxid

GXxGxX —— GxX ex X 45w x

idxp 18 uw
id

GXX > X X

where m : G x G — G is the multiplication map induced by the group structure.

Notice that given a C point g : * — G the composition

X — s+ x X 2% g x 1 X

is an automorphism of X with inverse g~' € G(C).
Associated to a group functor acting a space on there are several classical actions. Suppose we
are given an action G x X — X

¢ (Action of G(C) on C[X]) For g € G(C) and f € C[X] define

g-fi=fog™'

1

where g~ is the automorphism of X induced by g~'. Notice that on R points g - f is read as

follows
(g-f)(x) = f(g’1x) where x € X(R) and gf1 € G(C) — G(R)

In particular this action of G(C) on C[X] preserves the C algebra structure.

¢ (Action of g(C) on C[X]) Let & € g(C) and f € C[X] consider the composition,

a4
gx X — = T(GxX) — TX — Ty TA! 2, Al
where the first map is given the inclusion g(R) x X(R) C G(R[e]) x X(R[e]), the second and

the first map are the Tp and Tf respectively while the last map is ‘£L” which on R points is
defined as v+ ere — 7.
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Define & - f as the composition

. d
X — = xx X 2 g X — 5 T(G x X) — 5 TX —T1 TAT 455 AT

This induces a linear action of g(C) o C[X], which actually consists on derivations, we will
call such actions ‘actions by vector fields’. If X is a scheme and U is an open subscheme of X
the above diagram is actually well defined under the substitution X +— U this is essentially
due to the fact that if X € U(R) and ¢ € g(R) & - x € U(R[e]). Therefore given an action of G
on X it is defined an action of g(C) by derivation on C[U] for every open subscheme U of X.

Definition 2.2.9. A representation of an algebraic group on a vector space V is an homomorphism
of group functors
G — GL(V)

A representation naturally induces an action of G on V. Such actions are called linear.

Remark 2.2.2. By functoriality of Lie to every representation of G on a vector space V we obtain a
linear homomorphism
Lie(G) = EndV

In particular if G is algebraic, we may consider the adjoint representation of G on its Lie algebra
g (note thatif g € G(R) and & € g(R) C G(Rle])

Ad:G—GL(g) g (£ gEg")
which may be checked to be linear. By functoriality of Lie It induces a map
ad:g — Endg

one may also check that [x,y] := ad(x)(y) defines a Lie bracket on g, this is the only definition of
a bracket which is functorial (i.e. for every representation V the map g — EndV is a Lie algebra
homomorphism), see [Mill7].

2.24 Fixed points, quotients

Consider a given action of an group scheme G on a scheme X: n: G x X — X. We introduce some
spaces of invariant functions.

Definition 2.2.10. Let’s group a list of definitions
* (C[X]€) We say that f € C[X] is G invariant if the following diagram is commutative:

GxX —% X
7T f
1

_
X - A

Where 71, is the projection on the second factor. Let C[X]€ the set of G invariant functions. It
is a subalgebra of C[G].
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e (CIX]G(©)) Define C[X]G() to be the set of invariant functions for the linear action of G(C)
on C[X]

e (C[X]9) Let f € C[X] be a function. We say that f is g invariant if the composition

d
XX — T(Gx X) s TX —Fy TAT %€, 4!

is identically O;

* (C[X]¢(©)) Define the ring C[X]?(®) as the ring of invariant function for the action of g(C) on
C[X]. Since g(C) acts by derivations it is a subalgebra of C[X]

These spaces are all closely related.

Proposition 2.2.3. The following inclusions hold for any group scheme G and for every scheme X:

CIXI¢ c Cx]¢©
CX1® c Ccx9©
CIXI® c CcxI®
If in addition G and X are of finite type and G is connected , these inclusions are all equalities.

Proof. All the above inclusions are obvious. So assume that G and X are of finite type. Then
equality of morphisms may be checked on C points, which is exactly equivalent to say that the
first two inclusions are equalities.

Finally the equality C[X]S(®) = C[X]?(®) is a classical result of representation theory, which
actually holds for any representation: V&(©) = ve(C), O

When X is an affine schemes invariant functions are closely related to the notion of quotients.
We stick to this setting, let’s p : G x X — X be an action of an algebraic group on an algebraic
scheme X. Given any scheme Y and a morphism f : X — Y we say that f is G invariant if the
following diagram is commutative:

GxX —**
f
B

7'[2‘
X

Definition 2.2.11. Let p be a G invariant map p : X — Y. We say that the couple (Y,p) is a
categorical quotient of X for the action of G if it is universal among all G invariant maps. By
universal we mean that give any other G-invariant map f : X — Z there exists a unique morphism
F:Y — Z such that the following diagram is commutative

<%

f

X —F Ly



There is another notion of quotient, which involves the notion of invariant functions.

Definition 2.2.12. Let p be a G invariant map p : X — Y. We say that the couple (Y, p) is geometric
quotient if the following properties are satisfied:

* p is surjective (on C points) and the natural map
GxX—=XxyX

is surjective (on C points). Equivalently the C fiber of p consists of non-empty G orbits;
* p is submersive, which is to say that U C Y is open if and only if p~' (U) is open in X;

e The map of sheaves p* : Oy — p.Ox is injective and its image is exactly the sheaf of G
invariant functions. That is to say Oy (U) = Ox(p~' (U))€ (note that G actually acts on every
open subset of the form p~'(U)).

Given an arbitrary action of G on X both the categorical and the geometric quotient must not
necessarily exist.

The following proposition will be very useful for us and give a couple of criterions for the
existence of quotients. Here both G and X are assumed to be algebraic over C (i.e. of finite type).

Proposition 2.2.4. If the geometric quotient exists it is also a categorical quotient.
The following may be found in [MFK94][Proposition 0.2]

Theorem 2.2.2. Suppose X and Y are normal irreducible noetherian C schemes of finite type and let p :
X =Y be a G invariant dominant morphism. Suppose in addition that the maps

p:X—=Y GxX—=XxyX

are sutjective (on C points). Then the couple (Y, p) is a geometric quotient for the action of G on X.

2.2.5 The formal disc

We give here an overview of what we mean by formal disc and all the constructions relative to it.

Definition 2.2.13. We call D = Spec C[[t]] the formal disc over C, D,, = Spec (C[t]/(t")) the n-th
formal disc over C

We have natural closed immersions D,, — D, for m > n and D,, — D. These immersions
form a cone over D. Actually it turns D is the colimit (in the category of functors Fun(Alg, Set),
this is simply because C[[t]] is the projective limit in the category of C-algebras of the rings C[t]/(t").
Since it is a scheme and the category Schc is a full subcategory of Fun(Alg, Set) it turns out that
D is also the colimit of D, in the category Schc.

The same definitions work over an arbitrary C-algebra R.

Definition 2.2.14. We call Dg = Spec R[[t]] the formal disc over R and (D,)r = SpecR[t]/(t")
the n-th formal disc over R. As in the case R = C, D is the colimit of (D, )r in the category
Fun(Algg, Set) and hence it is also the colimit of (D )r in the category of R-schemes
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In virtue of the interpretation of D and Dy as a limit of the n-th formal discs, which, being
finitely generated R-algebras, satisfy nicer properties, we will be interested in ‘continuous’ objects
on D, obtained from a limit of objects on D,,. This will be made more precise every time we
introduce a new object.

We call the ‘0 point’ of Dy as the R point defined by the morphism of R algebras ev, : R[[t]] — R
which sends t — 0. Given a map of schemes ¢ : Dr — X of R-schemes we will call ¢(0) : SpecR —
X the map obtained by restricting ¢ to the 0 point Spec R — Dx.

The following lemma will be very useful.

Lemma 2.2.1. Let X be an R-scheme and U an open subscheme of X. Then there is a natural correspondence
U(RIt]) &= {e € X(RI[t]]) : ¢(0) € U(R)}

Proof. Since morphism of R-schemes ¢ : Spec R[[t]] — U are in natural correspondence with mor-
phisms ¢ : Spec R[[t]] — X whose image is contained in U we have to show that the image of a
morphism ¢ : Spec R[[t]] — X is contained in U if and only if the image of ¢(0) is contained in Ul
The ‘only if” part is obvious.

So consider a morphism ¢ : SpecR[[t]] — X such that ¢(0) has image in U. We can restrict
ourselves to check that the closed points are mapped in U since if any point is mapped in X \ U
then its closure is mapped in X\ U. Let p € Spec R[[t]] be a closed point. If t € p then p corresponds
to a closed point of SpecR so its mapped in U by hypothesis. Suppose by contradiction that
there is a maximal ideal p such that t is not in p then by maximality there exists v(t) € R[[t]] and
x € p such that T = x + r(t)t so x = 1 — r(t)t but this is an invertible element of R[[t]] hence the
contradiction. O

We introduce now the continuous cotangent module over the formal disc Dr over R. Consider
first the case of the n-th discs, it is easy to check that

Qb r =RIE/(E™ )t

this is also a module over R[[t]] and it is natural to define the continuous cotangent module over
R[[t]] as follows

Definition 2.2.15. The modules QEDH)R /g form a projective (???) system of R[[t]] modules. We
define

OpR" =lHmQp ),k
This definition is independent of a choice of a coordinate t. And given an isomorphism D =
Spec R[[t]] we have a natural isomorphism

QBoRt = Rl(t)dt

therefore QBEC/”{‘ is a free R[[t]]-module of rank 1, for instance it is self dual.

The group Aut O

We will describe in this section the group functor Aut O. We will see that considering it as a functor
will give us some useful insights on its Lie algebra that do not appear if we naively consider only
its C points.
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Definition 2.2.16. Let Aut O be the group functor defined from Alg to Grp as
AutO: Alg. — Grp Aut O(R) := Aut g cont (RI[[t]])

Where by a continuous automorphism we mean an automorphism which is continuous for the
topology generated by the ideals (t™).

Remark 2.2.3. Every such automorphism is determined by its image p(t). It is straightforward
that p(t) = 3 5, Tit" defines an automorphism if and only if 1o is nilpotent and r is invertible.

We have therefore a natural isomorphism
Aut O(R) = {p(t) = Z rit" : 1o nilpotent and 7y invertible }
n>0

Note that the group structure under this isomorphism is read

o-p(t) =p(o(t))

Because of the nilpotency condition the group Aut O is not representable by a scheme, but it is
actually an ind-scheme (i.e. a direct limit of schemes in the category of functors). Indeed the
subgroups

Aut O (R) == {p(t) = Z rit' : 7§ = 0 and 1y invertible}

n>0
are representable by Clxi, x; 'Ji>0/(x%) and their direct limit is exactly Aut O.

Definition 2.2.17. Let Der O be the Lie algebra functor of Aut O. Defined as
Der O(R) := ker(Aut O(R[e]) — Aut O(R))

Therefore an element x € Der O(R) is expressed pe(t) = t + ep(t) for an arbitrary p(t) =
Y o Tit'. Indeed the only conditions for pe(t) to belong in Aut O(R[e]) are that ery is nilpotent
which is always true since €2 = 0 and that 1 + er is invertible, which is true for any 1 € R (the
inverseis 1 — ery.

Proposition 2.2.5. Der O is representable and isomorphic to C[x]. The bracket on Der O is expressed as
follows:
[t +er(t), t +es(t)] = t+ e(r(t)s’(t) —v'(t)s(t))

Proof. The first part of the statement follows from the above discussion while the second is a
straightforward computation following the definition of the bracket for a general group func-
tor. O

Derivatives

We are now going to define certain derivatives. We will often be interested in R[[t]] points of groups
and we wish to make sense of the derivative along t of such points in terms of the Lie algebras.

Let (t+ €) : Spec R[[t]][e] — Spec R[[t]] the R-morphism defined by the morphism of R algebra
which sends t — t + €.Then the composition
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SpecR[[t]] —<=%— SpecRI[t]][e] — =5 Spec RI[[t]]

is the identity.

Definition 2.2.18. Let G be an algebraic group. And consider a morphism g(t) : Dr — G or
equivalently an element g € G(R[[t]]). We define its derivative with respect to t as the element

dg-g ' =glt+e)g ' (1)
Since g(t + €)e—o = g(t) this morphism defines an element of g(R[[t]]).

Consider now an element x(t) € g(R[[t]]) C G(RI[[tll[eo]). We wish to describe its derivative
with respect to t in terms of the ordinary derivative on g ® R[[t]]

Proposition 2.2.6. Consider now an element x(t) € g(R[[t]]) C G(R[[tll[eo]). Then the element dx(t) -
x~1(t) € g(RI[tl][€]) equals to
€0¢x(t)

Proof. 1t is easily computed for GL,, and since we are considering algebraic groups over C it is
sufficient to prove the general case. O
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Chapter 3

Vertex Algebras

In this section we introduce vertex algebras and briefly state the basic results of the theory, a more
detailed discussion can be found in [Fre07] and in [Kac98]. Next we are going to define a vertex
algebra closely related to g we will call it Vi (g). We will extensively study this algebra and see
for instance how the formalism of vertex algebras allows us to produce a large number of central
elements of the completed enveloping algebra.

3.1 Formal calculus

We briefly introduce the language of formal calculus. It involves computations on series living in
spaces such as C[[z*!,w*]], the space of formal power series a coefficients in C in the variables
zZ,W.

More generally given a vector space U we consider the vector space U[[zi']]; where i runs
from 1 to a certain natural number n. This is certainly a vector space, in the case in which U is an
algebra U[[z? |li won't be an algebra with the usual multiplication of series since in the formulas
infinite sums appear. If U is an algebra we can multiply series in different variables and in any
case is possible multiply series with Laurent polynomials so U[[zijﬂ}];L is a (C[zii]],-L module. The
partial derivatives 9., are also well defined.

Our standard notation for a series A(z1,...,zn) € U[[zii‘]] will be

_ —j1—1 —jn—1
Alz1y..oyzn) = E AjrinZ szt

We define here the linear map f(- dz;) :=Res,,—o(-dzi) : U[[z].i]}] — U[[zji] , £

e . . . 11 —Ji—1—=1_—jip1—1 —jn—1
JA(Zh“wZn)le = 2 Aj g, 0yt 1sein 21 ceeZi g Ziq Ry

3.1.1 The formal delta function

We introduce now a very important power series: d(z —w) € C[lz*!, wt']]. We define
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S(z—w) = Z Zhw

nez

here z — w is just a notation. It satisfies the following basic properties:

e For any series A(z) € U[[z*']] the product A(z)5(z—w) makes sense in U[[z*!, w*']] and the
following equation holds:
A(z)d(z—w) =A(w)b(z —w)

* The partial derivatives satisfy 9,6(z —w) = —0,,6(z — W)
¢ The formal delta function has some nice behavior with respect to the polynomials (z —w)™.
In particular we have that (z —w)8(z —w) = 0, (z — W)L, 18(z —w) = (n+ 1)A5(z — w)

and therefore (z —w)™0},86(z — w) = nld(z —w)

e Let A(z) be any formal series in U[[z*']]. Then A(z)5(z — w) is a well defined series in
Uz, w*']] and

The following proposition holds and will be crucial in the next paragraphs.

Proposition 3.1.1. The kernel of the multiplication by (z —w)™ in U[[z*!, wE ] is the U[[w*]] span of
8(z—w),...,0N"18(z —w). In addition the coefficients 'y (w) in the expression

N—1
x= Y vi(w)als(z—w)
i=0

for an element x in this kernel are unique.

Proof. We prove the firs part of the statement by induction on N. For N = 1 consider A(z,w) =
Y m Anmz ™ 'w T which is killed by z—w. Then the following condition on the coefficients
holds: Ant1,m — An,m+1 = 0. We deduce that the coefficients are constant on the diagonals:
n 4+ m = i+ j implies that A, w = Ayj. Let By := A, 1 for any choice of n + m = k and let
B(w) := Y Byw X! then a straightforward computation shows that

Az,w) = B(w)d(z—w)

Now suppose that we have A(z,w) € ker(-(z—w)N*1) by the inductive hypothesis we have

N1
(z—=w)A(z,w) = Z Yi(w)2},8(z —w)
i=0

By the properties cited above we therefore have




Finally by the first step of the induction there exists a y(w) € U[w*']] such that

Alz,w) = y(w ZW+Z%1 Loz —w)

To prove uniqueness notice that given two series B(w), C(w) we have
Bw)d(z—w) =C(w)d(z—w) = B(w) =C(w)
)N71

Therefore if Zl o Ty (W)L 5(z—w) = Z]i\';()] v{(w)dl,8(z—w) multiplying by (z—w we get
YN—1(W) =yNn_1(W)" and then we may proceed by induction. O

3.1.2 Fields

We now focus on the case in which U = End V for another vector space V, we study a particular
class of power series which are called fields.

Definition 3.1.1 (Fields). A series A(z) € End V[[z*']] is said to be a field if for every v € V the
evaluation of A(z) on v is a Laurent series:

z)v = Z An(V)z7v T e V((2) equivalently A,v =0 forn > 0

If V is a Z graded vector space V = @nezVn we have the usual notions of homogeneous
elements of V as well as homogeneous elements of EndV. ¢ € EndV is said to homogeneous
of degree m if @(Vn) C Vnym. A formal series A(z) = Y A,z ™! is said to be of conformal
dimension m if A,, is homogeneous of degree m—n —1 for every n € Z. Note that if the gradation
on V is bounded from below then any conformal series is automatically a field.

Remark 3.1.1. If A(z) is a field of conformal dimension m then 9,A(z) is a field of conformal
dimension m + 1. More generally 07'A(z) has conformal dimension m + n.

Definition 3.1.2 (Normally ordered product). Given two fields A(z), B(z) we define their normally
ordered product as
:A(z)B(z) ::= A(z)+B(z) + B(z)A(z)_

where A(z); stands for the nonnegative part (in the variable z) of A(z) while A(z)_ stands for the
negative part.

Even if in the computation of the coefficients appear infinite sums of endomorphism, it is easy
to check that they converge in an algebraic sense: for any v € V the evaluation of the above
series involves only finite sums. So the normally ordered product is a well defined element of
End V([[z*']] and it's not hard to check that it is actually a field.

We define the normally ordered product of multiple series from right to left:

:A(z)B(z)C(z) ::=: A(z)(: B(2)C(z) ) :

This definition appears to be a little arbitrary, but we will shortly see that it arises quite natu-
rally in the context of vertex algebras.

35



3.2 Vertex Algebras: definition and basic properties

We start giving a definition about fields.

Definition 3.2.1 (Local Fields). Two fields A(z), B(z) € End V[[z*']] are said to be mutually local
if there exist a large enough natural number N such that

(z—w)N[A(2),B(w)] =0

Definition 3.2.2 (Vertex Algebra). A vertex algebra is a vector space V equipped with the follow-
ing additional datum:

1. A vector [0) € V (the vacuum vector)
2. An endomorphism T : V — V (the translation operator)

3. Alinear map Y(+,z) : V — End V[[z*']] with image contained in the subspace of fields
AEVHYAzZ)=) Anz ™!
nez

The field Y(A, z) will be called the vertex operator associated with A while the endomorp-
shisms A, will be called the Fourier coefficients of the vertex operator.

This datum should also satisfy the following axioms:
1. Y(|0),z) =idy
2. Y(A,2)|0) € A+ zV([[z]]
3. TI0) =0
4. [TY(A,z)] =9,Y(A,z) or equivalently [Ty An] = mA,_;

5. (Locality) For any two vectors A, B € V the associated vertex operators Y(A,z),Y(B, z) are
mutually local fields

The definition looks a little bit cumbersome but we will shortly see how the vertex operators
encapsulate a lot of information about the commutation relations of the Fourier coefficients in a
very compact way.

Notice that the axioms for a vertex algebra make sense for any module V over a commutative
ring A. We will not pursue this point of view too deeply, even if it will come in handy from time
to time to consider vertex algebras over commutative rings such as C[x].

Most of the vertex algebras we will encounter have a natural Z grading. We therefore give here
the definition of what a Z-graded vertex algebra is.

Definition 3.2.3. A vertex algebra V is said to be Z-graded (or Z. graded if the gradation is con-
centrated in positive degree). If the vector space V is Z graded and so it admits a decomposition
V = @nezVa and in addition:

1. The vacuum vector |0) has degree 0;
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2. The translation operator T has degree 1;

3. Forany A € V homogeneous of degree n (i.e. A € V) the field Y(A,z) =} | Amz ™ T has
conformal dimension n, that is to say

degAp =n—m—1

Because of this shifting we will sometimes adopt the following notation: if A € V,, we will
write Y(A,z) =)  Amz ™ " sothatdegA,, =—m.

Now that we know what a vertex algebra is we define some categorical notions.
Definition 3.2.4. We list some definitions concerning morphism, direct sums and tensor products.

¢ A morphism of vertex algebras between two vertex algebras (V1,0)1, T1, Y1), (V2,10)2, T2, Y2)
is a linear map ¢ : Vi — V, that preserves the structures. In particular we require that
@(|0)1) =10)2, that @ o Ty = T; o @, and that ¢(A),@(B) = @(A,B) for all n € Z. This last
condition may be rephrased as follows:

@oY(A,z) =Y(@(A),z)o@
This gives us the notion of a category.

* The kernel and the image of a morphism of vertex algebras are defined as the corresponding
vector spaces, they carry natural structures of vertex algebras;

* Avertex subalgebra W of V is a subspace which contains |0), which is stable under the action
of T and for which for any A, B € W the elements A,,B are still in W. Equivalently it is the
image of an injective morphism W — V;

* Given two vertex algebras V7, V, their direct sum is naturally defined as V; & V, as a vector
space, [0) = 0)1 +10)2, T=Ty + T, and Y = Y; + Y,. This may be checked to be a product in
the category of vertex algebras;

¢ Given two vertex algebras V1, V; their tensor product is defined as follows. As a vector space
itis V1 ®V2,[0) =10)1 ®10)2, T=Ty ®id+1d® T, and finally Y(A®B, z) := Y(A,z) ® Y(B, z).
This defines the structure of a vertex algebra and it may be checked that is the coproduct in
the category of vertex algebras;

We will give other notions and constructions like the one of ideal and quotient after we have
developed a little further the theory.

As an example we will focus for a brief moment on commutative vertex algebras, we will see
that the category of commutative vertex algebras is equivalent to the category of commutative
algebras equipped with a derivation.

Definition 3.2.5. A vertex algebra V is said to be commutative or abelian if for any A,B € V we
have [Ay, B;m] = 0 for every n, m, or equivalently

[Y(A) Z)) Y(B)W)] =0

Another characterization is the following.
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Proposition 3.2.1. A vertex algebra V is commutative if and only if for any A € V we have
Y(A,z) € End V[[zl]

Proof. If for any A € V the condition Y(A, z) € End V[[z]] is satisfied we obtain that [Y(A, z), Y(B,w)] €
End V([z, w]] which by the locality axiom is killed by (z — w)N for a sufficiently large N. It's not
hard to see that in the space V[[z,w]] the multiplication by (z — w)N is injective, and therefore
[Y(A,z),Y(B,w)] must be 0. So V is commutative.

On the other hand assume that V is commutative. Then applying the vacuum vector to the
equation Y(A, z)Y(B,w) = Y(B,w)Y(A, z) we obtain

Y(A,z)(B +wVIwll) = Y(B,w)(A + zV[[z]])

Since the series are equal and the one on left hand side has only non negative powers of w while
the one on the right hand side has only non negative powers of z they must belong to V[[z, w]].
In particular the coefficients in Y(A,z)B polar in z are 0, that is to say that A,B = 0 for any
B € V and for any n > 0, but this is another way to say that A,, = 0 for n > 0 which implies
Y(A,z) € End V[[z]]. O

Now consider a commutative algebra V (with unity) equipped with a derivation T. One can
define a structure of vertex algebra as follows: as a vector space we take V, for the vacuum vector
we take the unity 1, while we consider the derivation T as the translation operator. Finally we
define the vertex operators as

1
Y(A,z) := Z = mult(T"A)z"

n>0

where mult(T™A) stands for the endomorphism given by the multiplication by T"A. It is a
straightforward to check that this datum satisfy the axioms of a vertex algebra, which of course i
commutative.

One the other hand consider a commutative vertex algebra V. Define a bilinear product on V
by

A-B:=A_B

Since V is commutative we have AB=A_1B=A_;B_1|0) =B_7A_41]0) = B_1A = BA so this
product is symmetric (and associative) and it is of course bilinear since A_ is linear as well as the
association A — A_;. Taking |0) as the unity we obtain a commutative algebra.

One may check that the translation operator is a derivation with respect to this product and
that the vertex operators are of the form Y(A,z) = Y % (T™A)_7z™ which is the same formula that
we used to define the structure of a vertex algebra on a commutative algebra.

The following proposition holds:

Proposition 3.2.2. The above construction defines an equivalence between the category of commutative
vertex algebras and the category of commutative unital algebras equipped with a derivation.

Given an arbitrary vertex algebra (not necessarily commutative) we can still define what its
center is.

Definition 3.2.6. Let V be a vertex algebra. We define its center ¢(V) as the following subspace
((V):={A e V:[Y(A,z),Y(B,w)] =0forall B € V}

We will check that it is an abelian vertex subalgebra of V after we have developed some of the
theory.
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3.2.1 First properties of Vertex Algebras

We are going to give here an outlook of some of the basic properties of vertex algebras. We will
follow [Fre07], omitting some of the proofs.
We begin with a simple but very useful fact.

Proposition 3.2.3. Let V be a vertex algebra and A € V. Then
T z"
Y(A,2)[0) =eTA =) —T"A
n>0

Proof. By the translation axiom we have that [T, Y(A,z)] = 9,Y(A,z) in particular, since T|0) = 0
we obtain
TY(A,2)[0) = [T, Y(A, 2)]|0) = 0.(Y(A, 2)[0))

This is a differential equation for Y(A, z)|0). Since we know that the constant term of Y(A, z)[0) is
A, we can find recursively using the above equation all the other coefficients and a straightforward
computation shows that they are exactly the ones of e*TA. O

Lemma 3.2.1 (Translation). In any vertex algebra we have
e"TY(A,z)e T =Y(A,z+ W)

where in the right hand side negative powers of Z + w are expanded assuming that w/z is small, that is to
say, in positive powes of w/z.

Proof. It is an easy computation to prove that

wT —wT n wh n wh
e"TY(A,z)e ™ = Y (ad T)(Y(A,2)) = > AN (Y(A,z)) —
n>0 n>0
And this is just the formal Taylor expansion of Y(A, z 4 w) in positive powers of w. O

This lemma states that the exponentiation of T gives us the translation operator z — z + w.

Proposition 3.2.4 (Skew Symmetry). In any vertex algebra the following identity holds:
Y(A,z)B = e*TY(B,—z)A
Proof. By locality we know that there exists an N such that
(z—w)NY(A,2)Y(B,wW)[0) = (z—w)NY(B,w)Y(A,z)|0)

and this is actually an equality in V[[z, w]]. We compute this expression as follows using the trans-
lation property we just proved.
(z—w)NY(A,2)e"TB = (z—w)NY(B,w)e*TA
(z—wW)NY(A,2)e"TB = (z—w)NeZTY(B,w — 2)A
zZNY(A,z)B = zNe?TY(B, —2)A
Y(A,z)B = e*TY(B,—z)A

39



We justify the above calculations. The left hand side of the second row, as in the translation propo-
sition must be understood as expanded in positive powers of z/w. By comparison with the expres-
sion on the right hand side we find that actually only positive powers of w appear and therefore
the factor (z —w)™ must cancel out all negative powers of (z—w) in Y(B,w — z)A. This allows us
to set w = 0 and the proof is concluded. O

As an application of skew symmetry we are now able to state a consistent definition of an ideal
in a vertex algebra.

Definition 3.2.7 (Ideals). A subspace I of a vertex algebra V is called an deal if it is preserved by
the action of T and if for every A € I, every B € V and every n € Z the element A, B still belongs
to I. Skew symmetry tells us that ideals are actually two sided (i.e. if A € I, B € V,n € Z we have
also B, A € I). Indeed by skew symmetry we have Y(B,z)A = e*TY(A,—z)B € I((z)). This allows
us to put a natural structure of vertex algebra on the quotient space V/I.

3.2.2 More on Locality

We review in this section the locality axiom, restating it in another fashion. This point of view al-
lows us to state another fundamental property of vertex algebra which is called associativity. This
property will lead to the crucial basic feature of vertex algebras: the operator product expansion
(OPE).

Given a vector space V the vector space of formal series V[[z*!, w*]] contains various notable
subspaces. The firs one is the subspace of regular series, which do not contain negative powers
of z and w: V([[z,w]]. The next two spaces we are interested in are V((z))((w)) and V((w))((z)) of
series with negative powers of w (resp. z) bounded from below, their intersection is the space of

series with negative powers bounded from below for both z and w: the space V[[z, w]] 71, w .

Consider for a moment the case in which V = C so the spaces C((z))((w)) and C((w))((z)) are
actually fields, and the ring C[[z, w]] [z—!,w~ '] is contained in both of them. In particular since

z — w is invertible in both these fields we obtain two embeddings:

1 /

C[[Z) W” [Zi] )Wi ) (Z - W)71]

C(2))((w))

C((w)((2))

They are different maps, viewing the two fields contianed in the same vector space C[lz*", wt].
In particular the upper embedding amounts to expanding (z — w)~! in positive powers of w/z
while, the lower one corresponds to the expansion of (z —w)~! in positive powers of z/w.

We have analogous embeddings in the case of V{[z, W]] [z, w1, (z—w)~ "] which is a local-

ization of V([z,w]] viewed as a C[z*!, w*!] module.

Now lets turn back to the situation of vertex algebra and lets focus on the locality axiom. Pick
three vectors A, B, C. By locality there exists a natural number N such that
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(z—w)NY(A,2)Y(B,w)C = (z—w)NY(B,w)Y(A,z)C

The left hand side belongs to the space V((z))((w)) while the right hand side of the equation lies
in V((w))((z)), being equal they must belong to the intersection of this spaces: V[[z, w]] =", wl.

This leads to the following reformulation of the locality axiom.

Proposition 3.2.5. In any vertex algebra V for any triple of vectors A, B, C € V the expressions Y (A, z)Y(B, w)C
and Y(B,w)Y(A, z)C are expression of one same element in V[[z, w]] ' w T (z—w) " in the spaces
V((2))((w)) and V((w))((z)) respectively.

Proof. Since (z — w)NY(A,z)Y(B,w)C € VIz,wll[zt",w*!] the element Y(A,z)Y(B,w)C must
be in the image of the embedding V[[z,wllz~",w™',(z — w)~'l — V((z))((w)), the analogous
statement is true for Y(B,w)Y(A,z)C. Using the equality above, and reading it in the space

Vilz,wllz~",w™, (z — w)~'] where we can divide by z —w we conclude the proof.’ O

3.2.3 Associativity

We saw in the previous section that the locality axiom may be rephrased as an equality of the
elements Y(A,z)Y(B,w)C and Y(B,w)Y(A,z)C in the space V[iz,wll[z~!,w~!, (z — w)~'] which
embeds in two different ways in V((z))((w)) and V((w))((z)). There is a third natural space in
which we can embed V[[z, W]z, W™, (z — w) '] thatis V((w))((z —w)).

The following proposition holds.

Theorem 3.2.1 (Associativity). Consider a vertex algebra V and three vectors A,B,C € V. Then the
elements
Y(A,z)Y(B,w)C Y(B,w)Y(A,z)C Y(Y(A,z—w)B,w)C

are expansions of the same unique element in V([z, w]] 271, w!

V((z))((w)), V(W) ((2)), V(W) ((z — w)).
Here Y(Y(A, z —w)B, w)C stands for the series

, (z—w) ™" in the corresponding spaces

1

;Y(AnB,w)Cm

Proof. See [Fre07], theorem 2.3.3. O

It is useful to think the associativity property as an equality
Y(A,2)Y(B,w) = ) Y(A.B,w)(z—w) ™" (3.1)

This is very convenient since relates a product of two vertex operators with a linear combina-
tion of other veretx operators but we have to be careful. Appliying both sides to a vector C we do
obtain the convergence of the series but they still are not exactly equal: they are expansion of the
same element of V([[z, w]][z~",w~!, (z—w)~']. This equality, with the above understanding in the
following way, is called the operator product expansion or OPE for short.

We are now ready to see some of the most important corollaries of associativity which are some

of the most essential features of vertex algebras. We start with a technical lemma.
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Lemma 3.2.2. Let @(z),(w) be two fields on the same space. Then the following are equivalent:

1.
[p(2), b(w)] = NZO] Ty W) 5Lz —w)
2.
N-—-1 1
ofebw = 3 vibw ((z—wﬁ“>|z|>w+  lzIb(w) : and
= 1
W0 = 3 i) () e

Where by (W)\zblwl we mean its expansion in positive powers of w/z.

Proof. This is a simple computation. A detailed proof may be found in [Fre07], lemma 2.3.4. O

Now our vertex operators satisfy the first condition of the lemma, being mutually local, and
moreover thanks to the OPE formula we are able to compute the polar coefficients in (z — w) of
Y(A,z)Y(B,w) we obtain the following theorem.

Theorem 3.2.2. Given two vectors A, B in a vertex algebra V, the commutation relation of their vertex
operators may be written as follows:

[Y(A,2), Y(B,w)] = ) %Y(AnB,w)ags(z —w) (32)

n>0

While for any couple of vectors A, B and any number n € Z we have

1
Y(AnB,z) = ek ," 'Y(A,z)-Y(B,z): ifn<0 (3.3)
Y(AnB,z) = J(w —z)"[Y(A,w),Y(B,z)ldw ifn >0 (3.4)
Proof. It can be found in [Fre07] section 2.3.4 “corollaries of associativity’. O

Keeping in mind the first part of the theorem we will rewrite the OPE formula as follows:

Y(AnB,w)

Y(A,2)Y(B,w)~ )

n>0

This will be a shorter notation to keep in mind that the commutation relations between the two
fields Y(A, z) and Y(B,w) is encoded in the polar part (i.e. with negative powers of z —w) on the
right hand side.

We are now able to see how normally ordered product was not an ‘ad hoc’ definition but it
arises quite naturally in the contex of vertex algebras. We obtain also the following useful corol-
laries.
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Corollary 3.2.1. The following hold

1. Forany A € V we have
Y(TA,z) = 0.Y(A,z)
2. For any m-tuple of vectors A, ... A™ and negative numbers ny, . .., Ny we have

1 1
(= (T = 1)

Y(AL, .. AT 10),2) =

3. The span of the Fourier coefficients A, € End V is a Lie subalgebra of End 'V, the bracket is given by
the followig formula:

n

An,Bml =) (k> (AkB)nim x
k>0

Where we use the enlarged definition of binomial which allows n to be negative:

ny nm-1...m—k+1) . ) ny
<k> - 8 Fl>0, (O>_1

Proof. Part 1 follows from the second statement of theorem 3.2.2 applied considering B = |0) and
n = —2 and finally noticing that A_,|0) = TA, this is easy since TA = TA_;]0) = [LA_]|0) =
A_,|0). Part 2 is an simply an iterative application of the second part of theorem 3.2.2. While the
third statement is follows from expanding the terms in formula 3.2. O

We are also now ready to prove that the center of a vertex algebra is actually a subalgebra.
Corollary 3.2.2. The following equality holds:
((V)={AeV:AB=0foralln>0andB e V}
In particular Given a vertex algebra V, its center (V) is a subalgebra of V (which is of course abelian).

Proof. Consider formula 3.2. We have already proved in proposition 3.1.1 that the formal series
oL 8(z —w) are VimwE"] linearly independent. From this we deduce that [Y(A,z),Y(B,w)] = 0
if and only if Y(AB,z) = O for all n > 0. Finally we remark that the map Y is injective, since
(Y(A,2)10))2=0 = A. So Y(AnB,z) = 0if and only if A,,B = 0, this proves the first part of the
corollary.

Now to see that ¢(V) is a vertex subalgebra of V we start by remarking that since Y(|0), z) = idy
we certainly have |0) € ((V). Moreover since Y(TA,z) = 0,Y(A,z) it easily follows that ((V) is
invariant under the action of T.

Notice that the condition A,B = 0 for all B € V and for all n > 0 is equivalent to ask that
Y(A,z) € End V[[z]]. Finally we have to check that if A and B are central so itis A, B for any n € Z.
This is certainly true for n > 0 since A, B = 0 by hypothesis. For n < 0 we use the second part

theorem 3.2.2. ]

(—m—1)!
Since both series are regular (without polar parts in z) we have

19, Y(A,2) - Y(B,z) := (9, 'Y(A,2))Y(B,z) € End V[[z]
and therefore Y(A,,B, z) € End V[[z]] so A,,B is central as well. O

Y(AnB,z) = 10, "Y(A,z2) - Y(B,2) :
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It is also possible to define the centralizer of an element S.

Definition 3.2.8. Let S € V. Define the centralizer of S in V as the subspace
Z(S):=={A e V:[Y(A2),Y(S,Ww)] =0} ={A € V:A,S=0 foralln >0} = {A € V:Y(A,2)S € V[[z]]}
It is a vertex subalgebra of V.

Proof. The equalities above, as in the case of {(V), easily follow from theorem 3.2.2. Since it is quite
clear that [0) € Z(S) and that Z(S) is invariant under the action of T, to prove that Z(S) is a vertex
subalgebra of V it suffices to consider two elements A, B € Z(S) and show that for any k € Z the
product AxB € Z(S). Using theorem 3.2.2 we see that for k < 0

ﬁ . a;k_1Y(A, Z) . Y(B,W) )
1

R (0% "Y(A,2) 1 Y(B,2)S + Y(B,2)d, % 'Y(A,2)_S)

which is clearly in V[[z]]. While for k > 0

Y(AB,z)S =

Y(AkB,z)S = J <(w —2)*(Y(A,w)Y(B,z)S + Y(B, z)Y(A,w)S)) dw

which again is easily seen to be in V{[z]]. O
The characterization we gave in theorem 3.2.2 of the vertex operators naturally leads to the

following theorem which is a good starting point to construct vertex algebras.

Theorem 3.2.3. (Strong Reconstruction) Let V be a vector space, |0y € V a vector and T an endomorphism
of V. Let

a%(z) = Z a%z ™!
nez
where o runs over an ordered set 1, be a collection of fields on V such that:

1. [T,a%(z)] = 0.a%(z);

2. T|0) = 0 and a*(2)|0) € VI[z]], we will call a® := a*,|0);

3. Forany «, B € 1 the fields a*(z) and P (z) are mutually local;

4. The lexicographically ordered monomials aﬂn e af;‘lm_1 |0) with ny > 0 span V.
Then the formula

i

1
Y(a®,, y...a%y  410),2) = 1 07'a® (z)...00ma%*m(2) :
[

[
3

o
Il

defines a vertex algebra structure on V such that |0) is the vacuum vector, T the translation operator
and Y(a*,z) = a*(z) for all « € 1. Moreover, this is the unique vertex algebra structure on V satisfying
conditions 1,2,3,4 and such that Y(a%,z) = a%(z).

We are going to give some example of vertex algebras though we will limit ourselves to the
vertex algebras that are the most interesting for us: the Virasoro algebra and the algebra Vi (g)
associated to the affine algebra gy.
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3.3 The Virasoro Algebra

Consider K = C((t)) and let
DerK = C((t))0¢

be the Lie algebra of continuous derivation of K, with the Lie bracket given by the usual formula
[F(1)9t, 9(1)3e] = (f(t)g"(t) — F'()g(t))d
We consider a central extension of Der K which we will denote by Vir the Virasoro algebra.
Definition 3.3.1. The bilinear map
A 1
/\DerK = C  (f(t)d,g(t)d,) — —5Resi—o (f(t)g” (t)dt)

is a cocycle in H?(Der K, C) and therefore defines a central one dimensional extension Vir of Der K
which satisfies the exact sequence

00— CC— Vir - DerK—=0

As a vector space Vir = Der K @ CC, C is central and the bracket is given by

[f(£)0r, g(1)delvir = (f(t)g'(t) — f'(t)g(t)) Dy — £Rest:o (f(t)g" (t)dt)

12
If we consider the topological generators L,, := —t"*t19, n € Z we obtain the following relations:
nd—n

[I—n) Lm} = (Tl - m)I—ner + 6n,fmc (35)

12

In the definition the factor 75 is of course inessential, but it is present for notational and histor-
ical reasons. In what follows we will define a vertex algebra closely related to Vir, we will see that
this construction in a certain sense generalizes to the construction of Vi (§).

3.3.1 The vertex Virasoro algebra

Consider the Lie subalgebra Der O @ CC C Vir where Der O is the Lie subalgebra consisting of
derivations f(t)0; with f(t) € C[[t]]. Consider also its one dimensional module C. where Der O
acts trivially while C acts by the multiplication of ¢ € C.

Define a Vir module inducing the representation just presented:

Vir. .= Ind gierr (’)EB(CC(CC = U(ViT) ®U(Der O®CC) Ce.

This is of course a Vir module and by the Poincaré-Birkhoff-Witt theorem (which we will refer
to as the PBW theorem from now on) it has a basis given by the monomials

Ly, ... Ly, 10y withng <. <npy < —1

Where [0) is a fixed generator of C.. We define a structure of Z, graded vertex algebra on Vir,,
we will extensively use the reconstruction theorem presented in the previous section (3.2.3).
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* (Z, grading) We set degL,, ...L,, 10) = —) ;ni. Notice that since in Vir we have the
relations [Lo, L] = —nL,, and since Ly|0) = 0 the operator L, acts exactly as the grading
operator;

® (Translation operator) Set the translation to be T := L_;. Notice that the action of T is com-
pletely determined by the properties that in Vir the relations [L_1,L,] = (—m — 1)L, hold
and that L_/0);

* (Vertex Operators) We set

Y(L_2[0),z) =T(z) := Z L,z "2

nez

By the reconstruction theorem and since the monomials Ly, ...L,, [0) span Vir. to obtain
a vertex algebra we only have to check that T(z) is local with itself and that [T, Y(L_,[0),z)] =
0.Y(L_2|0), z). Both of these are straightforward calculations and we omit them. It turns out that

T(z), T(w)] = %83\,6(2 —w) +2T(w)0,0(z —w) + 0, T(w) - 8(z —w)

and therefore (z —w)*[T(z), T(w)] = 0. The number c is known as the central charge.

The Virasoro algebra comes in the picture numerous times. A very important class of vertex
algebras is equipped with an action of Vir where C acts by scalar multiplication by a certain cen-
tral charge c. We are particularly interested in such algebras where the action comes by internal
symmetries, which is to say that there is a vector w € V whose Fourier coefficients generates the
action of the Virasoro algebra. This leads to the following definition.

Definition 3.3.2. A Z graded vertex algebra V is said to be conformal of central charge c if there
is a non-zero vector w € V; such that the Fourier coefficients LY of the corresponding vertex
operator

Y(w,z) = Z LT\{Z_H_Z
n

satisfy the commutation relation of the Virasoro algebra with central charge c and if in addition
we have deg = LY and T = LY. Note that with respect with our standard definition LY = w1

A vertex algebra may be equipped with various structures of conformal vertex algebra. A first
example is the Virasoro vertex algebra itself, taking the conformal vector to be w = L_5|0). In this
case the conformal vector is unique since (Vir.); is one dimensional and L_, is the only scalar
multiple of L_, which satisfies all the desired properties (for instance A(L_,|0)); = Adeg). We
state a very useful lemma.

Lemma 3.3.1. A Z graded vertex algebra V is conformal of central charge c if and only if it contains a
nonzero vector w € V; such that the Fourier coefficients of the corresponding vertex operator

Y(w,z) = Z LYz 2
n

satisfy the following conditions: LY, = T,LY = degand LY w = $(0). Moreover in the case this conditions
are satisfied there exists a unique morphism of vertex algebras Vir, — V such that L_,[0) — w.
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Proof. We need to show the following OPE

Y(Tw,w) Y(w,W) c 1
(z—w) +2(Z—W)2 2 (z—w)?

Y(w,z)Y(w,w) =

which amounts to show that

Mo=Tw Lfw=2w LYw=0 L}/w:%|0> LYw=0forn>2

The last equation is true because V is Z, graded and LY w has negative degree for n > 2, all the
other equations are true by hypothesis, except the third one.
To prove it denote by y(w) := Y(LY w,w) by the OPE formula we find

[Y(w) Z)) Y((,U,W)] = i

= uafvé(z—w) +Y(W)32,8(z—w) +2Y(w, w)dd(z—w) + 0, Y(w, w) - §(z—w)

Now we consider the same expression with z replaced by w and vice versa. Using the fact that
0.8(z —w) = —0,,6(z — w) and summing the two equations we find

0= (y(w) +v(2))0%,6(z—w)

3.4 The Verma module V,(§)

We are now going to define a vertex algebra Vi (§) closely related to §, the vacuum Verma module.
The subspace g[[t]] © C1 is a Lie subalgebra of §x. Analogously to what we have done for the
Virasoro algebra we consider the one dimensional module C|0) for g[[t]] & C1 on which g[[t]] acts
trivially while 1 acts as the identity.

Next we consider the induced module

Vi) = nd 3,1, CIO)

t]]®C1

One can easily check that this is a smooth module for gx. Let J* be an ordered basis for g (this
will be our standard notation from now on) and denote by J§ = J*®t™ € gy, these are topological
generators for gy subject to the relations

U5 Td = 04T nsm + 1k (% J)8n,—m1

By the Poincare-Birkhoff-Witt theorem V) (g) has a basis consisting of the lexicographically
ordered monomials

e Jamlo) withng <np <--- <y < 0and if ny = nyy g then a; < aiyg

We are going to define the structure of a Z graded vertex algebra on Vi (g).
e We take |0) as the vacuum vector;

* We set the grading to be deg ]! ... Jqm[0) == — ) ny

IMm
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® As the translation operator we consider the operator —9; acting on gx, more concretely we
define the operator T through the conditions

LJnl=nJn,  TI0)=0
¢ For the vertex operators we define

Y(,2) =]%) =) Jaz ™!

By the reconstruction theorem, as in the case of the Virasoro algebra, we only have to check that
the vertex operators J¢(z) are mutually local with each other and that [T, Y(J¢,10),z) = 0,Y(]%;, z).
This are both quite easy calculations, in particular it turns out that

J%(2),J° (W)l = %, J°1(W)8(z — w) + k(J%, ]°)dwd(z — W) (3.6)

As the Z.. grading is concerned it is easy to see that Y(J¢,[0),z) = Y J9z ™! has confor-
mal dimension equal to 1 as desired. As remarked before if A(z) is a field of conformal dimen-
sion m its derivative 07'A(z) is a field of conformal dimension m + n, so the fields Y(J&[0),z) =

%GQY(E] |0),z) have conformal dimension n as desired. An easy induction shows that

n—1)!
Y(Jal ...Jam|0),z) has conformal dimension — ) n;. Finally the operator T is clearly of degree

1 while |0) is of degree 0. All axioms of a Z graded vertex algebra are hence satisfied.

We are now going to study more in detail the vertex algebra Vi (g§) as k varies, we are going
to define the Segal-Sugawara operators (or just Sugawara operators for short). Studying these
operators we will see the first appearance of the critical value k = —1/2, indeed the Sugawara
operators will be central only for k = —1/2.

3.4.1 The Segal-Sugawara Operators

Consider the killing form kg4 on g. Since it is non degenerate given a basis | of g we may consider
the dual basis J, with respect to the killing form. It is defined by the relations k4(J%,Jb) = 8q,b-
Consider the element

S:= Y J% 0110 € Vi@)

Definition 3.4.1. (Segal-Sugawara Operators) Given a simple Lie algebra g consider the vacuum
Verma module Vi (§) and the element S € Vi (§) just defined. The operators Sy,

Y(S,z) =) Snz ™2 =S(z)

are called the Segal-Sugawara Operators.

The definition of the element S gets inspiration from the Casimir element of the standard uni-
versal enveloping algebra U(g). Similarly to the Casimir element S does not depend on the choice
of the basis J* (but if we change the associative form with which we calculate the dual basis S
will be modified by a scalar). The Casimir element being central, it is reasonable to think that the
Sugawara operators commute at least with the action of gix on Vi (g). This though, is not always
true as the following proposition shows.
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Proposition 3.4.1. We have the following OPE

a J¢(w)
Je@Sw) ~ (ko 5)
In particular the following commutation relations hold
1
Sl = (4 )M (37)
And therefore the Sugawara operators commute with the action of i if and only if « = —J g whis will be

called the critical value.

Proof. This is just a simple computation. By the OPE formula we have

je@sin) ~ 3 U

n>0

Since Vi (@) is Z.. graded, S is of degree 2 and ], is of degree —m we only need to compute J3 S for
n =0, 1,2. We recall here the commutation relations in gy:

U'(rlw 121] =, Jb}ner +nk(J9, ]b)én,fm

e (n=0) Since [J§,J°,] = [J¢,J*]_1 and since J§|0) = 0 we have
1
188 =52 (0% 1T, 1 + %% Jel1)l0)
b

This corresponds to take the commutator with the Casimir element. The same proof of the
centrality of the Casimir element applied in our situation provides us with J§S = 0;

e (n=1) Asbefore J¢0) = 0 and [J§,J®,] = [J¢,J°lo + (], J°)1. We have:
1
jis=3% (0% 7la % )T, 124 (0 ol + (0%, 1) ) 0

The expression

ZZ k(% T b1+ k(% T6)]24)10)

is exactly equal to kJ¢,|0). Indeed since Jy, is the dual basis of J® with respect with the killing

form k, we have
2 Z Ia Ib Z Kg Ia Ib o 7](1

The same is true for 3 k(J%,Jo)J".

Next we focus on the remaining term

3 3 (5 7¥10T oo + 240 el )10 = 3 377 ¥leT 110) = 3 3 0% Pl
b b

b
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We must therefore calculate the sum } , [[J¢, J°1, Ju]. We claim it is equal to J¢. Notice first
that this is exactly the action of the Casimir element }_, JJ° through the adjoint represen-
tation. Since g is simple and the Casimir element is central it must act like a scalar. To
determine this scalar we compute the trace

T(Z]b]b Ztr (ad (Jp)ad (Ju)) ZKQ Ju,J°) = dimg
b

So Y ., JuJ? acts as the identity on the adjomt representation and Y, [[J¢,J®1]p] = J° as
desired. To sum up we proved that ¢S = (k+ $)]%,0);

e (n =2) As always we have J¢|0) = 0 and [J$.]®,] = [J¢, J°]; we have to compute
y 2 2+)1 p

2[(1“ I I 0,1+ % Joly ) ZZI“ I Jo,110) = ZZ( 0,7 elot+«(J )1, Jo)1 >|0>
The first term of this last sum acts like 0 on |0) so all that we are left to compute is

> (%7, o)
b

Since S does not depend on the choice of the basis, we may as well assume that J® is an or-
thonormal basis so that J, = J°. Using the associativity of k we find out that k([J¢,]%],]°) =
k(J¢,J°,J%] = 0 and the sum is 0.

The last part of the proposition, the statement that [J¢,, Si] = (k+ 3)mJ¢_ . follows from a simple
expansion of the OPE we just calculated. O

We just found out that the Sugawara Operators commute with the action of gy for k = k. = —7J.
We remark here that some of these operators are actually 0. Indeed for n > —1 since Y(S,z)|0) €
VI[z]] we have that S;,|0) = 0, in addition S;, commutes with the action of §x so it must be identi-
cally 0.

We investigate now some of the properties of the Sugawara Operators away from the critical
level. So, in what follows, consider k # % Normalize S with this assumption as follows:

~ 1
_k+1/zs

From formula 3.7 with this new normalization the following commutation relations hold:

[STH Ig’J = _mI'?Ler

This is a very nice formula. In particular it shows that Sp = deg and that S_; =T.

Recalling that J¢ = J¢ ® t™ we see that the action of S, looks like the action of —t"*19,. We
want to see if it is true that the commutations relations of the operators S,, are the same as the
operators —t"19;. We will see that this is almost true: the S,, do not generate an action of Der K
but they do generate an action of its central extension Vir.
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Proposition 3.4.2. The following OPE relation hold:

&/ & S (W) 25(w) k+1/2 dimg/2
SESM - L T o w2 T e

We denote the constant term of the factor (z — w)~* by cx/12. In particular the S,, generate an action of
the Virasoro algebra with central charge cy. Vi (§) for k # —1/2 is therefore a conformal vertex algebra of
central charge cy.

Proof. It is sufficient to calculate the OPE

5 x Y(S1S,w)
S(s)S(w) ~ n;] FEmI=:

the shifting of indices is due to our shifted definition of the S,,. Since S, has degree n and S has
degree 2 we can restrict ourselves to n = —1,0, 1,2, recall that for n > —1 we have S,|0) = 0. We
proceed with the calculations applying the commutation relations

o, o) = —MJ Ry m

e (n = —1) We must calculate S_; %ﬁ > o J%1Tb,—110) this is equal to

ZZ<S 1,010 6,1+ 45 1,]b,1]>|0>=

which is just T(S)

1
k+1/2

> (0°%J6,-147%16,-2)10)

b

N —

¢ (n = 0) As in the previous point we calculate

ZZ<SO’ o, -14]° ISO>]b1)|O

(J°1T6,—14J%1J6,—1)10) = 2§

N \
N

b

* (n = 1) We omit the first passage which is always the same, we obtain

! 1
2k+1/ZZ ]0]b71+1 1Ib0)‘> 1/221 ]b 1\0)

which is 0 as we can choose J® = Jy,;

e n=2)

)1)[0) = dim g/2/0)

k
Ib—]‘i‘] 1]b1)|o k+1/2

N
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We obtained that for any k # —1/2 the vertex algebra Vi (§) is a conformal algebra. Informally,
the algebra Vi (§) may be viewed as the limit for k — k. of the vertex algebras Vi (§) for k # —1/2,
we may wander if the conformal structures ‘pass to the limit” and generate at least an action of the
Virasoro algebra.

The following definition arises quite naturally.

Definition 3.4.2. A a vertex algebra V is said to be quasi-conformal if it is equipped with a Der O
action which satisfies the following conditions:

¢ ForanyA € Vandanyn > —-1l,me Z

n+1
L, Am] = k; (k N 1)(LkA)n+mk

e The operator L_; = —0; acts like the operator T;
¢ L, acts semisimply with integer eigenvalues;
¢ The Lie subalgebra Der, O = tC[[t]]d; acts locally nilpotently.

These axioms, in particular the first one, emulate the behaviour of a conformal algebra. The
main difference is that the action of Der O does not need to be generated by a conformal vector,
neither we ask it to be part of a Der K action.

Remark 3.4.1. A quasi conformal vertex algebra for which Ly|0) = |0) is automatically Z graded.
Indeed consider Ly as the grading operator, this is well defined since L acts semisiply with integer
eigenvalues. The translation operator has degree 1 since [Lo,L_1] = L_;. On the other hand,
considering an homogeneous vector A € Vi, (i.e LoA = mA) we have that

oAn = 3 (4 1) BAhnr = (L3l + [LoAln = (TA)nat 4 An = (m— = TIA,
k>—1

so A, has degree m —n — 1 as desired.

Notice that g has a natural Der O action: namely the one induced from the natural action on
g((t)). Since this action preserves the subalgebra g[[t]] & C1 we have that it induces an action on
the algebra Vi (§). For k away from the critical level, this action is described by the Sugawara
operators. At the critical level we still have

Proposition 3.4.3. The natural action of Der O on the vertex algebra Vi (g) makes it a quasi conformal
vertex algebra.

Proof. Consider the lie algebra Lglk] = Lg ® C[k] where C[K] is the free polynomial algebra in the
variable k. Consider the C[k] bilinear cocycle on Lg[k] defined by

c(X®f(t) @ p(k), Y@ g(t) ® q(k)) = p(k)q(k)Kkg(X,Y) Jf(t)g’(t)dt
denote by § = Lg[k] #C[k]1 the central extension obtained with this cocycle. It is a C[k] Lie algebra.
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Consider the module

V(g) :=nd? 1 CIK][0)

[[t]][k]®Clk

where g[[t]][k] acts trivially while 1 acts as the identity (all actions are C[k]-linear). By the PBW
theorem V(§) has a C[K] basis given by the lexicographically ordered monomials

ajg Am |0>

ny o )nm

as in the case of Vi (g§). We define C[k]-linear vertex operators in the same way we did with Vi (g).
We obtain a C[k] vertex algebra whose reduction to k — k = 0 is isomorphic to Vi (§).
Let S be defined as in the case of Vi (§)

S .= ;Z 19 Jar-110) € V(§)

then the vertex operators Sy, for n € Z defined by Y(S,z) = Y | ., Snz ™ ? satisfy the following
relations:
[Sn» Ign} = 7(k + ]/z)mlg—o—m

As well as the ordinary vertex algebra relations

n+1
[Sn>Am] - k;] (k + 1>(SkA)n+mk

(the shift of the indices is due to the fact that the S, are shifted with respect to the usual notation).
Now the action of Der O on Lg induces a C[k] linear action on Lg[k] and hence a C[k] linear
action on V(g§) whose specialization to k = k coincide with the Der O action on Vi (§). The com-
mutation relations
Loy ] = —mJ5im

uniquely determine the operators L,, and therefore we find that
Sn=(k+1/2)L,
These implies that the expressions
LnyAml and Y (’;) (LA ) mgm—k
K>—1

are equal after multiplying by (k + 1/2). These expressions live in End ¢ V(@) which is a free
C[k] module and hence torsion free. The expressions above are therefore equal (it is not necessary
anymore to multiply by (k+1/2)) and specializing to k = —1/2 = k. we get the desired statement.

O

This concludes the properties that we wanted to explore in this chapter. In the following chap-
ter we will investigate the relation between V. (§) and the completed enveloping algebra U, (§).
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Chapter 4

The relationship between Vk(g) and
U«(8)

In this chapter we investigate the relationship between the vertex algebra Vi (§) and the completed
enveloping algebra U, (§). We will see that there is a way to associate to any vertex operator in
Vi (8) a sequence of elements in U, (g). This association preserves the commutation relations in

particular central elements in V; (§) will produce a lot of central elements U, (§). Everything will
be explained more precisely in what follows.

4.1 The Lie algebra associated to a Vertex Algebra

In the previous chapter we presented the commutation formulas

[An) Bm] = Z <Z> (AkB)nerfk [T) An] = _nAnfl
k>0

which are valid in End V and prove that the span of the Fourier coefficients in End V for a Lie
algebra with the usual commutator. We are now going to generalize this result: we will define
U(V) the Lie algebra of ‘formal Fourier coefficients’. It is topologically spanned by elements of the
form A, with A € V which are the analogues of the Fourier coefficient A,,. This will be much
larger than the actual algebra of Fourier coefficient for instance we may have A,, = 0but A,; # 0.
This property is going to be very important.

Definition 4.1.1. Let U(V) be the vector space defined as
_ VecC(()
Ima

and equip U(V) with the topology induced by the subspaces U(V)n, = Im (V ® t"C[[t]] — U(V)).
This makes U(V) into the completion of U’(V) := V®Clt, t~']/Im d under the topology generated
by the subspaces U/'(V),, :=Im(V @ t"C[t] —» U’(V)). For A € V and n € Z denote by

uw): where 0 =T®1+1® 0

A[n] =[A®tY]
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This is a set of topological generators for U(V) and a set of generators for U’(V). Finally define a
bilinear map

n

[" It U/(V)®2 - U/(V) [A[an[mJ] = Z <k

> (AkB) msm—k
k>0
where Ay B is the usual k-product on V.

The bilinear map defined above may be checked to be continuous with respect to the topology
defined above. We will denote by [., .] its extension to U(V). We want to check that [., ] is actually
a Lie bracket on U(V). By continuity it is enough to check it on U’(V) and therefore we will do our
calculations on elements of the form A ;.

Proposition 4.1.1. The formula above is well defined and it induces a Lie bracket on U(V). The natural
map

Y:UV)—EndV AR f(t)] — JY(A, z)f(z)dz
is an homomorphism of Lie algebras.

Proof. Let’s check first that [, .] is well defined on U’(V). The formula above certainly defines a

bilinear map (V @ Clt, t*1]))®2 — V®CIt,t']. We need to check that [0(v),w] € Im d and that
[v,d(w)] € Imd for any v,w € V@ Clt, t].

* ([v,0(w)] € Imd) As stated before we can restrict ourselves to the elements of the form

v = Ay and w = Byy,,) we have

[Angy 0(Bimy)] = [Afmy, (TB) my+MBm 11l = Z (2) (A (TB)) s m—r)+M(AKB) s m—k—11)
k>0

This is easily checked to be equal to

0 < > <1]:> (AkB)[n+m—k1>
k>0

e ([0(v),w] € Im0) The expression
n n—1
A Bi] = X (1) (Bl wems) + (") 1AB o
k>0
may be checked to be 0.

Let’s prove now that this bilinear map gives us actually a Lie bracket. We are going to consider
first the subspace U/ (V)o = V/ImT = Im (V — U/(V)) given by A — Ajp;. Notice first that this
subspace is preserved by the bilinear map [., .]. Indeed [A o}, Bjo;] = (AoB)o].

From the skew symmetry property

Y(A,z)B =e*TY(B,—z)A
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it is quite clear that the following equality holds in V
AoB =—BoA+T(...)
This easily implies that [.,.] is alternating:
(A1, Bio)] = (AoB) o) = —(BoA) o) + (T(...))g = —(BoA) 0] = —[Broy, Ao
To prove the Jacobi identity consider the equality
[Ao, Bol = (AoB)o
which is easily derived from the OPE formula. We next compute
[Ao), Biog, Crojll = (Ao(BoC))jo] = ([Ao, BolC + BoAsC) 0 = ((AoB)oC + Bo(AoC)) 0]

which is exactly [[A o7, Bjoj], Cio1] + [Bioj, [Afo], Cio1]]. We proved that the subspace V/Im T with this
bilinear form is actually a Lie algebra. To deduce that the entire space U’(V) is a Lie algebra with
the product we defined consider the vertex algebra V @ C[t, t~'] where we consider C[t,t"'] as a
commutative vertex algebra with the derivation 9. Recall that the vertex operators are given by

Y(A®B,z) =Y(A,z) ® Y(B, z)
In our particular case consider A ® t™ and recall that
Yt z) = Z émult(ak’c“) = Z n mult(t™*)z*
) t k

k!
k>0 k>0

So we have

Aeto=Y Ave (muw@)tnk))

k>0

In particular if we can identify U’(V) = U'(V ® Clt, t~'])o since Tygct,t—1] = 0. We find from the
above formulas that the bilinear map defined in both cases is actually the same. Since we proved
that on U/ (V ® CIt, t~']), it defines a Lie bracket the same must be true for U’(V). O

Remark finally that the association V +— U(V) is actually functorial. Indeed given a morphism
of vertex algebras ¢ : V — V'’ is quite easy to see that the morphism

Ule) : U(V) = U(V)  Apg = (@(A))m

Is well defined and an homomorphism of Lie algebras.
We conclude with a fundamental remark regarding the center of the vertex algebras we are
considering.

Remark 4.1.1. If S € V is a central element then the elements Sj,,; € U(V) are all central (i.e
[X, Stny] = 0 for any x € U(V)).

Proof. Recall that we already proved that an element S € V is central if and only if for any A € V
we have A, S =0 for all n > 0. This implies that for any A[,; € V

n
(Al Sl = ) (k) (AxS) fmsn—k) =0

k>0

Since the A[,) topologically span U (V) and the bracket is continuous the proof is completed. O
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4.2 The relationship between V,(§) and U,(§)

We are going to define a morphism of Lie algebras U(Vi(§)) — ﬂK(/g‘) which sends (J%4(0))n; —
Ja-

This remarkable morphism allow us to produce a large number of central elements in U, (g)
since any central element S € ((Vi(g)) will generate central elements in Si,,; € U(V), which in
particular commute with the elements (J,10)) ;. The images of the Sj;,; commute therefore with

the J&,, since these (along with 1 which is already central) topologically generate the algebra U, ()

we obtain that the images of the Sp,,; are also central in U (§).
Start by considering the formal series

Y100,z = ) Jaz !

nez

as series with coefficients in U, (@).
With the next definition we extend the definition of fields to the case of U (§) in order to exhibit
some of the typical vertex algebras calculations in this setting.

Definition 4.2.1. A formal series a(z) € U, (§)[lz*"] is called a U, (§)-field if its action by left
multiplication induced on the quotients U (§) /I, is the one of a field.

The following is an easy verification.

Remark 4.2.1. The formal series Y[]%,]0), z] are GK(’@)—ﬁelds. Ifa(z) € ClK(ﬁ)[[zi1]} isa th(ﬁ)—field
then its derivative 0,a(z) is a field.

Lemma 4.2.1. If a(z),b(z) € U, (§)[[z="]] are two U, (§)-fields then the formal series
ond(z—w)ra(w)b(z)

where 5(z — w) 4 is the positive part of &(z — w) with respect to the variable w, is a well defined series in
U, ()=, W), Its residue with respect to w is therefore a well defined series in U, (§)[lz*"]] which in
addition on U, (§)-field.

In particular the normally ordered products (calculated in U, (a)

:07a(z) - b(z):
are a well defined formal series in th (8)[[z*"]] and in addition they are th (§)-fields.

Proof. We consider the coefficients of a(z) and b(z) as the endomorphisms of GK(/g‘) induced by
left multiplication. The analogous statements for fields on a vector space is easily seen to be true.
Therefore the formal series

08(z—w)ia(w)b(z)

Defines a well defined endomorphism of U, (8)/1,, for every positive integer n > 0.
Since the various fields defined on the quotients U, (g)/1,, are compatible with the projections
U (8)/Im — U« (8)/In each coefficient of 9],0(z — w)a(z)b(w) defines an endomorphism of

U ().
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Analogously for any n > 0 and for any k € Z the infinite sums appearing as the coefficients of
0n0(z —w)ra(z)b(w)1 are (by the field condition) actually finite sums in U, (g)/I», since U (g) is
complete we have that each coefficient of 93, 6(z — w) a(z)b(w) defines an element of U (g).

The endomorphism of the coefficients 0};,5(z—w) a(w)b(z) on Uy (8)/1,, coincide with the left
multiplication by these elements and therefore the residue [ 9],6(z — w)a(w)b(z)dw is again a

U, (8)-field.
The statement concerning the normally ordered product easily follows from noticing that

J(am(z —w)ra(w)b(z) — 9jy8(z—w)_b(z)a(w))dw =: 97 a(z) - b(z) :

O

Corollary 4.2.1. For any m > 1, any m-tuple of integers nq, ..., < 0 and any m-tuple of indices
ai, ..., Qm the normally ordered product

(0, Y[A0), 2L A YO 0), 2]
computed in U, (§) is again a well defined formal series with coefficients in U, (§).
This allows us to extend linearly the map J¢;10) — Y[J2,10}], z] linearly to the whole Vi (§)

Y,z Vie(8) — U (@)[zF]]

1 1
-y —1""—n,—1

Y[Jar

&L Jam0), 2] = (0, Y[ 0), 2] A, YO 0), 2]

This is definition is completely analogous to the one of the vertex operators. There is a big
difference though: the coefficients of these new vertex operators are elements of U, (g)!

Theorem 4.2.1. The linear map ® : W' (Vi (8)) — ﬂK(ﬁ) defined on the generators
A[n] — (Y[A, Z})n

where (Y[A,z]), is the k-th coefficient of the series (i.e. the coefficient of z—*~" following our usual nota-
tion). Is a well defined continuous linear map and it is an homomorphism of Lie algebras. In particular since

U, (@) is complete it induces an homomorphism of Lie algebras
© : U(Vic(8)) — Ux(®)

Consider for a moment the following diagram:

U(Vi(@) —2= Uk(d) — End Vi()

l Jsa

U(Vi(8)) End Vi ()

All the maps reported above are homomorphisms of Lie algebras and by how we defined the
map @ this diagram is also commutative. If the morphism U (Vi (§)) — End Vi (§) was injective
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we would already be done, but unfortunately this is false in general. In particular it is false the
case we are most interested: k = k.. Indeed we will see that the Sugawara operators @ (S;,)

are non-zero in lNlK (g), but we remarked that for n > —1 and k = k. act like 0 on Vi_(g), so the
morphism U(V) — End Vi (§) is not injective.

Consequently the theorem does not follow from the above diagram and we have to work a
little bit harder. Its proof will occupy the rest of the section, we will start with some definitions
and some technical lemmas.

Definition 4.2.2 (m-product for series). Given two U, (@) fields (or two fields) a(z), b(z) we define

fm:a;mqa(w)'b(w): m< 0

In addition notice that for m > 0 the following equality holds:

1

a(w)-m-1b(w) == —

J (0j08(z —w)a(z)b(w) —dnd(z —w)_b(w)a(z))dz
Lemma 4.2.2 (ﬂK(ﬁ) Dong Lemma). If a(z),b(z),c(z) are mutually local ﬂK(ﬁ)-ﬁelds then the fields
a(z)mb(z) and c(z) are mutually local for every m € Z as well.

Proof. This is exactly the same proof as the Dong Lemma regarding the usual notion of fields. A
proof can be found in [Fre07], lemma 2.2.3. O

If a(z) and b(z) are also local with respect to each other we know that
1
[a(z),b(w)) = 3 —Com(w)OT}8(z—W)

m>0 '

It is quite clear, using the properties of o, that

We immediately notice that in order to prove that the map U (Vi (g) — Uy (8) is an homomor-
phism of Lie algebra it is enough to prove the following proposition.

Proposition 4.2.1. For any two vectors A, B € V(§) and for any m € Z we have that
Y[A, W], Y[B,w] = Y[A B, W]

Indeed this is clearly implies the theorem since by the above remarks we obtain [Y[A, z], Y[B, w]] =
Ym0 i YIARB, WIOR8(z —w).
The following lemma can be found also in [Kac98, Theorem 4.1], we restate it in terms of flK (8)-

fields.
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Lemma 4.2.3 (Kac). Let V be a collection of mutually local U, (8)-fields (or fields) which is a vector space
and which is closed by all the m-th products then V alongside the datum |0) = idg (4, T = O and the
vertex operators

Y(a(t),2)b(t) := ) a(thDb(t)z™ !

keEZ

is a vertex algebra.
Proof. 1t is not difficult to show that if (z — w)N[a(z), b(w)] = 0 then
(z—=w)N[¥(a(t),2), Y(b(t),w)] = 0
and this essentially proves locality. The other axioms of a vertex algebra are obvious. O

Using the Dong lemma repeatedly we see that the closure for m-products of the subspace

Y[V (8),z] C ﬁk(ﬁ) [[z*'"] consists of mutually local ﬁK(@)fields. By the previous lemma it is a
vertex algebra with the above defined structure.
We obtain the following corollary.

Corollary 4.2.2. Given A, B, C € Vi (8) and any integers m, n the following equality holds:
YIA, zlm (Y[B, zI, YIC, z]) = Y[B, z]. (YIA, zIn YIC, z]) + Z (T) (Y[A, z];Y[B, 2] ) m4n— YIC, z]
j=0
and the skew symmetry formula
a(z)nb(z) = (=)™ ( ZO n]lla’;(b(z)wrma(z)))
m>

Lemma 4.2.4. Let n < 0 denote by J%(z) := ﬁa;m‘ J%(z). Then for any n,m > 0

J¢ 1 (2,2 (W)l =

(- ( > <m> A K, TP (W)oK Mz — w) + (]9, T0)On ™ 6(z—w))
k=0

nim! k

In particular we have the following expressions for the products J%(z)x]5, (z) for k > 0.
e ItisOfork<nork>n+m+1

o [t isequal to

n k! m n-+m-— a n k a

1 (ORS00 = 1107 ()% s ()
fork € myn+mj

® Fork =n+m+1itisequal to

Mm+m+11)

(=D" T
n.m.

K(]a)]b)
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Proof. The first formula easily follows from taking the derivatives of the equality

[J9(2),J° (W)l = J%,J°H(w)8(z —w) + k(] %, J*)0w8(z — w)

While the formulas for the positive products J¢(z)xJ%, (z) follows from the fact that for any two
mutually local fields a(z), b(z)

lal2),blw)] = 3 - (alwlib ()2 5z~ w)
k>0
O]

The following lemma is the first step to prove proposition 4.2.1. Notice that given a monomial
A € Vi (8) in the J§ the following formula

Y[R Azl = :Y[J2[0),z]YIA,Z] :
holds by definition only if the monomial J% A is lexicographically ordered.

Lemma 4.2.5. For any n < 0 for any index a and every A € Vi.(§) the following equality holds:
YaAzl = :Y[Jal0),2lY[A,z]: = :Jh(2)Y[A,z]:

Proof. By linearity it suffices to prove the statement for A a monomial in the J% . We will do this
by induction on d the PBW degree of A.

(d =1) Wehave A =J? |0). If J¢ < Jb we are done by definition of Y. So suppose J¢ > J° . We
have

YURTI0), 2l = YII% TP nsml0), 2 + YR JR10), 2] = YU, T8 nl0)y 24+ : T (2) 5 (2) -

Thus we have to prove

: ]?1(2)]21(2) L ]&(z)]ﬁ(z) = Ua)Ib}ner(Z)

and this is a straightforward calculation. And notice that together with Lemma 4.2.4 proves the
equality
Y0R10), 20 Y(J10),2) = Y(RI0))k(J2410),2) - VkeZ

(d = d+ 1) Write A = J% B for another monomial B so that A = ] B is lexicographically
ordered and deg,, B = d. Suppose in addition that ] > J% otherwise we are done by definition
of Y.

Denote by A(z) and B(z) the vertex operators Y[A,z] and Y(B, z|] for simplicity. We need to
compute

J3(2)-1 (15 (2)-1B(2)) = J%(2)-1 (3 (2) Z( ) 28 (2), ,Blz) @D
k>0

this equality holds by corollary 4.2.2. On the other hand we have

YUﬁJEnBv z) =YI EJ]%B’)Z] +YIJ4, ]b}n+mBa z]
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since n < —1 by assumption, the monomial [J¢, JPlnimB is already ordered therefore the second
term equals to

0% T T m(2)B(2) :

this may be checked to be equal to the second term of formula 4.1 using lemma 4.2.4.
Indeed notice that ¢ (z)yJ%, (z) is of the form J§(z) so we have

Ja(2hJ%(2), ,B(z) = Y(((J&10)k(J%I0))k 2B, 2)
and therefore the sum above equals to
Y([210)) -1, (J510)) 11B,2) = Y([J2,T%IB,2) = Y(*]®In+mB, 2)
We are left to compare the terms
J°(z)-1(J&(2)-1B(z)) and Y[J5JaB,z]

in order to prove that they are actually equal we move J5; through the factors of B in order to order
2B. We obtain J§B = C+ D where C is an the lexicographically ordered monomial obtained from
J&B and D is the difference J$B — C which is easily seen to have PBW degree < d.

Y[JP J9B,z] = Y[J . C,zl + Y[J%,D,z] = :J%(2)C(z) : 4+ :J%,(z2)D(2z) : =:J% (2)Y[J¢B,z2]:

The second equality follows from the fact that J5, C is an ordered monomial and by the inductive
hypothesis on J© D. Finally, always by the inductive hypothesis we have

Y[J9B, 2] = J%(2)B(2) :

we conclude that
Jm(2) -1 (Jm(2)-1B(2)) = Y] 3B, 2]

and this concludes the proof. O

As a corollary we may immediately see that the function Y[-, z] is well behaved with respect to
the operator T.

Lemma 4.2.6. For any A € V(g) the following equality holds
Y[TA,z] = 0,Y[A, 7]

Proof. We prove the statement by induction on the PBW degree of A (i.e. its degree as a monomial
in the J9). The thesis is of true by definition for A = J$|0). Suppose now that it is true for any
monomial of degree < N and consider a monomial ]ﬁiA with deg A < N. We have

YT Azl = YI=mJb Azl + YO TA 2zl = —m: J% 1 (2)YIA, 2] : +: % (2)d.YIA, 2] :
=0, :J%(2)YIA,z] := 3, Y[J2 A, z]

the second equality follows from the previous lemma while the other are obvious. O

We are now ready to prove proposition 4.2.1.
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Proof of proposition 4.2.1. We prove the assertion by induction on the PBW degree of A and B. The
case deg A = degB = 1 is a straightforward computation and follows from the first formula of
lemma 4.2.4.

Now assume that we proved the proposition for deg A < N and deg B < M, we are going to
prove that the proposition for degB < M + 1. We consider therefore ordered monomials A and
J° B with deg A < N and degB < M.

We will write for convenience Y[A, z] = A(z) and Y[B, z] = B(z).

We need to compute

A(2)n (J5(2)-1B(2)) = ] (2) -1 (A( 2))+ ) (AhJn(2), ;B

k>0

By the inductive hypothesis A(z)x]?, (z) = Y(A«J2,10)), in addition it can easily be checked that for
k > 0 AyJ?, is a sum of monomials of degree < deg A, therefore, always thanks to the inductive
hypothesis we have

Y(AxJ210),2)n—1-«Y(B,2) = Y((AkJ%10))n—1-«B, z)

Summing over k > 0 and using the analogue identity in Vi (§) We obtain

A(2)n (Jm(2)-1B(2)) = T (2) -1 (A(2)nB(2)) + Y([An, J3]B, 2)

Now thanks to lemma 4.2.5 we have

A(2)n(J%(2)-1B(2)) = Y(J5,AnB, z) + Y([An, J2IB, z) = Y(AL]5. B, 2)

as desired. To conclude the induction it is enough to show that if the statement is true for the cou-
ple (A, B) it is also true for (B.A). To see this we consider the skew symmetry formula combined
with lemma 4.2.6
1 1
B(zlnA(z) = 3} —OlMA(2)minB(2)) = 3 — 0" (AminB)(z)

m>0 : m>0

_ < y nLTm(AmB)) (2) = (BuA)(2)

m>0

4.2.1 A complete topological algebra associated to a vertex algebra

Now that we proved that the map U(V(g)) — U, (§) is an homomorphism of Lie algebra we are
ready to introduce the complete associative algebra U(V) associated to any vertex algebra V. We
will see that for any Lie algebra g (not necessarily simple) there is an isomorphism

U(Vi(g)) ~ Uy (8)

Definition 4.2.3. Let V be any vertex algebra and we define U(V) to be the complete associative
algebra constructed as follows.
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Let U(U(V)) the classical enveloping algebra of the Lie algebra U (V) divided by the two sided
ideal generated by 1 — (|0))[_1;) and consider its completion along the left ideals In generated by
elements of the form Ap,,; :n > N

U(U(V)) = HEm U(U(V))/In

the product may be checked to be continuous under the topology generated by the In and there-
fore T(U(V)) is a complete topological associative algebra. Finally define

Q(v):=auv))/g
where ] is the two sided ideal generated by the Fourier coefficients of series of the form
1 Y[A,z]Y[B, z] : =Y[A_;B,Z]
We have the following proposition

Theorem 4.2.2. Let g be any Lie algebra and let « be an invariant inner product defined on g. Consider
the affine algebra §,. Note that all the constructions of U, (§) and V,(g) make sense for g not necessarily
simple.

Then the homomorphism of Lie algebras introduced above

U(Vi(g)) — Uk (@)

induces an isomorphism

U(Vi(g)) ~ U (8)

Proof. Since Uy (g) is an associative algebra we naturally have an homomorphism U(U(V,(g)) —
U, (§), which may easily checked to be continuous following the definitions, it therefore induces
an homomorphism U(U(V,(g)) — U, (8).

By proposition 4.2.1 the Fourier coefficients of the series Y : [A, z]Y[B, z] : —Y[A_;B, z] are sent
to 0 and therefore we get a well defined map

U(Vi(g)) = Uk (@)

To show that this is an isomorphism we define an inverse. Note that the map

8 = U(Ve(e)) TR 040w 10 (00 =1

is easily checked to be an homomorphism of Lie algebras, indeed

021100 (7400l = 3 () 0271000 ot = 57410 v + T2 0]
k>0
= (Ua) Ib]f1 ‘O>)[n+m] + nK(]a) ]b)(|0>)[n+m71] = (Ua) Ib}f1 ‘O>)[n+m] + nKUa» ]b)én,fm

O
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The last equality follows from the fact that (|0)),) = 0 for n # —1, indeed in V(g) ® C((t)) we
have |0) ® t™ = 3 (51510) ® ™) forn # —1.
3 The homomorphism g« — U(Vi(g)) induces an homomorphism of associative algebras U(g«) —
U(V(g)) which is checked to be continuous and which sends 1 — 1 so it induces an homomor-
phism
U (8) — U(Vi(g)

This is easily checked to be the inverse of the homomorphism U(Ve(g) — flK(@) indeed
it is quite easy to see that both algebras are topologically generated by elements of the form
(J%410))n) and J& respectively. By construction both homomorphism send (J¢,/0)),; — JS and
J& — (J%410)) () and therefore they are one the inverse of the other.

4.3 The center

In the previous section we developed an efficient method to construct central elements in the
completed enveloping algebra: taking the vertex operators of central elements of Vi (g). We will
therefore focus on the latter center.

The critical value is the only interesting case.

Proposition 4.3.1. The center (Vi (8)) is trivial for k # k. (i.e. it is spanned by |0)).

Proof. Consider the normalized Sugawara operators S and a central element A € ((Vi(§)). By
definition of central element we have S;,A = 0 for all n > —1 (recall the shift on the indices in the
definition of the Sugawara operators). In particular

SoA =degA =0

Therefore A must be a multiple of |0) since the space Vi (§)o is one dimensional and spanned by
10). O

We will focus therefore on the critical level k = k.. Since in all the other cases the center is
trivial we lighten our notation defining ((g) := ¢(Vi, (8)).
In the case of Vi (@) there is a much more convenient description of the center:

Proposition 4.3.2. Foranyk € C
C(Vie(§) = Vie(g)

Proof. The inclusion ¢(Vi(@)) C Vi (8)¢!*! is obvious since by hypothesis every central element S
satisfies J&S = 0 for all n > 0. To show the other inclusion consider an invariant element S and
consider the centralizer Z(S) C Vi(§) which is a vertex subalgebra of Vi(g). Since by hypoth-
esis Z(S) contains all the J¢,]0) and since the latter elements generate Vi (g) in the sense of the
reconstruction theorem we see that it must be

Z(S) = Vi (8)

So S is actually central. O
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This is very nice. To compute ¢(Vi, (g)) we will use the approach of graded algebras. The ver-
tex algebra Vi (§) carries a natural filtration induced by the PBW filtration on U(§y ), the associated
graded space is well known and so is its space of invariants this will allow us to put an upper
bound to the space Vi, (g)8!t.

Let’s start with a definition regarding filtered vertex algebras.

Definition 4.3.1. Let V be a vertex algebra. A filtration on V is a sequence of subspaces V<; for
i > 0 such that:

® V., is a filtration on the vector space V, so V<i C V<it1 and V =UVcy;
* |0) € V<o
* The subspaces V<; are T-invariant;
® For A € V<; and B € Vq; all the products Ay B for k € Z lie in V<4
If V is a filtered vertex algebra the associated graded space (set V<_1 =0)
grVv .= @ V<i/V<ioi
i>0
has a natural structure of a vertex algebra.

Proposition 4.3.3. The PBW filtration on V\.(§) defines a structure of filtered vertex algebra on Vi (§).
The actions of Der O and g[[t]] are compatible with this filtration (i.e. g[[t]] - Vi (§)<i C Vi (8)<i)-
Moreover the associated graded vertex algebra is abelian and isomorphic to

grVie(d) = Sym (&

both as abelian vertex algebras as g[[t]] modules and as Der O modules. Here the derivation of the space
on the right is 9y while the structure of g[[tl] module is the one induced by the natural action of g[[t]] on

a((t)/gllt]].

Proof. This is a simple verification. O

It is not hard to see that if we denote by Symb(A) € V<i/V<i_1 for A € V<;i \ V<i_; that for
any x € gl[tl]
Symb(x - A) =x-Symb(A)

and therefore

(4.2)

g((t)) ) gllt]]
ol[t]]

To study the right hand side of this formula which we denote

g((t)))““‘”
gllt]]

to justify this notation, but more importantly to compute Inv g*[[t]] we are going need the
formalism of Jet schemes.

gr ¢(Vk(8)) € Sym (

Inv g*[[t]] :== Sym (
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4.4 Jet Schemes

Definition 4.4.1. Let X € Schc be any scheme over C. We define functors of C-algebras

JnX(R) == X(R[t]/t™)
JX(R) := X(RI[[t]])

JX is be called the jet scheme of X, while J,,X is called the n-th jet scheme of X (we will justify this
nomenclature with the following proposition). We often denote by X[[t]] the set of C points of JX:

XI[t] := JX(C) = X(CI[t]])

Toamap f: X — Y of C-schemes we can associate natural maps Jnf: JonX = JpnYand Jf: JX —
JY, these associations are functorial. There are natural maps

Tmn  JnX = JmX forn>m
Tt JX = Jim X

The map JX — ] X is a cone with respect to the various maps JonX — JmX. JX is actually the
projective limit of the J, X.
JX = lim JnX

Proposition 4.4.1. If X is of finite type over C then |, X and JX are representable. It turn out that J, X is
of finite type for any n.

The functoriality of jet schemes is fundamental when talking about algebraic groups and group
actions on schemes. Let G be an algebraic group over C. Recall that the groups we start with are
always affine and of finite type but we are now going to consider algebraic groups which are not of
finite type. Then it is quite clear the J,,G are algebraic groups of finite type and ]G is an algebraic
group.

If X is a scheme with an action of an algebraic group G then J,,X comes with a natural action of
Jn G while JX is equipped with a natural action of JX.

The C points of the Lie algebras Lie(J,,G) and Lie(JG) are given by g ® % = g[t]/t™ and
g ® CI[t]] = gl[[t]] respectively, both equipped with the bracket induced by the bracket on g.

Since the spaces ], X and ]X are equipped with a J,,G and a JG action respectively the rings
ClJnX] and C[JX] result equipped with an action of g[t]/t™ and g[[t]] respectively.

As an example consider first the case in which X = AN then

—k
JkX(R) = AN(R[E)/t%) = {( Z Xint ™ Ditxin €Ri=1,...,N} = RNK

n=—1

JX)(R) = ANRIH = {(D_ ximt ™ Niixin €Ri=1,...,N} ~ J] RN

n<0 n<o0

Therefore we have J, AN ~ Spec Clxi nli—1,... . Ni—k<n<o and JAN ~ Spec Clxi nli=1,... ,Nmn<o-
This will be our standard notation.
For a morphism:
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AN f AM

(P1yeesPm)
SpecClx1,...,xn] ——"5% SpecClyr,...,yml
Where we read f as (P1,...,Py): the morphism induced by y; — Pi(x). The induced mor-
phism between the jet schemes may be described as follows.
Consider the formal series it t with coefficients in C[xi nli=1... N,n<o defined by x;(t) :=
Y oo Xi,nt ™" and the formal substitution

P(x) — P(x(t)) = Z Pi,n(X)t_n_1

n<0

where we are using a slight abuse of notation, by P(x) we mean for instance P(x1,...xn) while
by Pi n(x) is a polynomial in the x; ».

Proposition 4.4.2. The morphism associated to J(P1,...,Pnm) between the jet spaces Spec C[xq n] and
Spec Clyi,n] is the morphism induced by the map of rings Yin +— Pin where Py n is the polynomial
defined above.

Proof. This is just a verification using the definitions. O

We conclude our presentation of jet schemes with a technical but very useful lemma, which we
will not prove.

Lemma 4.4.1. Let f : X — Y be a morphism between schemes of finite type over C. Suppose that f is
formally smooth and surjective (on C points). Then the morphisms Jnf: JnX — JnYand Jf : JX — JY are
formally smooth and surjective (on C points).

441 Action of Aut O on Jet schemes

Consider a scheme X as always as a functor of C algebras. There is a natural action of the group
Aut O on the jet of X:

Aut O(R) x JX(R) = Aut cone (RI[t]]) x X(R[[t]]) — X(R[[t]])  (p,x(t)) — X(p)(x)

this induces an action of Aut O(C) and Der O(C) and the algebra of functions on JX.

4.5 Description of Inv g*[[t]]

We are now ready to give a complete description of the space Inv g*[[t]] = Sym (g((t))/gl[t]]) ol

but first we have to reinterpret the algebra Sym (g((t))/ g[[t]]) as the algebra of functions on a
geometric space, here jet schemes will come in the picture.

Let g* be the scheme associated to the dual vector space of the Lie algebra g. Pick a basis J* of
g and denote by J¢ the linear functional on g* defined by evaluating ¢ € g* on the J°. So



It is clear that the elements J¢ form basis of g** and that

Clg*] = C[J°]
With the notations we used so far we have that C[Jg*] = C[J%,]0, furthermore notice that
Sym (g((t)) / g[[t]]) = C[J&]n<o. This notation is more than a mere coincidence.
Indeed consider the linear map

g((t)/alltl] — (g*[[t])"  &(t) = (@(t) = J(‘P(’E),E(t)>dt)

which identifies for instance J$ with n < 0 with the linear functional on g*[[t]] defined by
2 <o @nt ™ 1= @, (]%). This is a linear continuous functional on the vector space g*[[t]], which
consists in exactly the C points of the scheme Jg*.

These descriptions suggest the following proposition.

Proposition 4.5.1. The map

ClJg*] — Sym (g((t)/glltl])  Jo% — 8

is an isomorphism of algebras and of g[[t]] and Der O(C) modules. Where the action of g[[t]] on C[Jg*] is
induced through the jet functor as described before by the coadjoint action of G on g*, while the action of
Der O(C) is the one induced by the action of Aut O on Jg*.

Proof. The fact that it is an isomorphism of algebra is clear from the above descriptions. To see that
it commutes with the action g[[t]] notice that since G acts on g* with the coadjoint action g acts on
Clg*] = Sym g through the adjoint action. From these premises, using the definition of jet schemes
and of the induced action it is not difficult to conclude the the isomorphism is g[[t]] equivariant.
An analogous verification proves Der O(C) invariancy as well. O

Corollary 4.5.1. The isomorphism Sym (g((t))/glltll) ~ C[Jg*] induces an isomorphism on the space of
invariants

[t]]

Clg*1e™ ~ sym (g((t))/glith) "™ = v g*[[t]

This also justifies the notation Sym (g( (t))/g[[ﬂ])g“t” = Inv g*[[t]].
Now that we described or ring of invariants in a geometric way we can give the desired de-

scription of Sym (g( (t))/ g[[t}]) 9l e consider first the finite dimensional case.
As we saw in the preliminaries the space of polynomial invariants of C[g*] is a free polynomial
algebra, generated by 1 = dim h homogeneous polynomials Py,..., Py:

Clg*]¢© = C[g*]*© =C[Py,...,P] = Invg*

s There is more, consider P := Spec C[P;] and consider the morphism induced by the inclusion

C[Pi] = Clg*]

p:g-—P
The following theorem is due to Kostant [Kos63].
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Theorem 4.5.1. Let gy, be the open subscheme of g* defined by
g:eg = {X € g* : dim Ox = 1}

then the map obtained by restriction
P — P

is smooth (and hence formally smooth), surjective and its fibers are single G orbits. Sop : gr,, — P isa
geometric quotient. In particular

Clg;egl*™ =p"CIP]

Using the formalism of jet schemes we are now ready to pass from the finite dimensional case
to the computation of C[Jg*][t)].

Theorem 4.5.2. The map induced by Jp : Jg* — JP on the ring of functions
Jp* : CIP] — ClJg")

is injective and induces an isomorphism.
ClJP] = (C[]g*}g[[t”

In particular if we take Py as the polynomials in Clg*] which generate as above the free subalgebra C[P) then
we have

ClJg1e™ = CPi nliz1,..1n<0

where the P; n are defined as in proposition 4.4.2.

Proof. We will prove first the ‘finite dimensional’ case.

Lemma 4.5.1. For every n > 0 the map induced by Jnp : Jn@reg — JnP is a geometric quotient with
respect to the action of | G.
In particular since all schemes appearing are of finite type

Cllngre)®/t" = ClJn P

where we identify C[]P] with its image under ], p* which is injective.

Indeed since p : gy, — P is smooth by theorem 4.5.1 we obtain applying lemma 4.4.1 that
Jngreg — JnP is smooth and surjective. For the same reasons the map

JHG X ]ngieg — ]ngieg X P Ingieg

is surjective, therefore the geometric fibers of |, p consist in single ], G orbits and we may apply
theorem 2.2.2 to find out that Jnp : Jngieg — JnP is again a geometric quotient.

Corollary 4.5.2. The injective map
Jap® : CUIPI = Cllng]

induces an isomorphism
ClJnP] = ClJng e/t
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Since the composition C[J,P] — C[Jng*] — ClJng,. g] is injective the first map must be injective
as well, in addition all functions coming from J,,P are automatically J,, G invariant and therefore
g[t]/t" invariant as well. So

ClJnP] C ClJng*et/t"

To show the other inclusion consider a g[t]/t" invariant function on J,,g*. Its restriction to Jng7.4
which is an open subscheme of J, g* is still g[t]/t™ invariant and by the lemma it belongs to C[J,P].

We are now ready to prove the statement of the theorem. Note first the following remark,
which follows from the description we gave of the ring of functions on jet schemes.

Remark 4.5.1. Any regular function f : JAN — A comes from a regular function f : J,AN — A
under the injective morphism 7, induced by the natural map 7, : JAN — J,,AN.

The map Jp* is injective. Indeed consider a regular function f € C[JP] which is sent to 0 €
C[Jg*] under Jp*. By the above remark there exists a positive integer n such that f comes from a
function f : J,P — A'. Since the following diagram is commutative

Jg* _ T Tng*

JP — s JnP

and since J,p* is injective we must have f = 0 and hence f = 0.
In addition any function which is the pullback of a function on JP is automatically G invariant.
Therefore we have
ClJP] c ClJg*) ¢ c Cljg*]o!)

To show the other inclusion consider a function f € ClJg*1e) and pick f : JoClJng*] — A
such that f = 7/, f. We would like to show that f is g[t]/t™ invariant. Consider the commutative
diagram

Jo x Ja* ——— TG x Jg*) — 5 T(Jg") — TAl 155 4]

w w 1 -
| .
Jng X Jng"® —— T(JnG X Jng*) m T(Jng™) 7’ TA! — Al

Notice that the map Jg x Jg* — Jng % Jng* is surjective on C points. Therefore given an element

(&,%) € Jng x Jng* we may pick (Z,X) € Jg x Jg* which maps to (&,x), by hypothesis the upper

row, evaluated on (Z, X) is equal to 0 and by commutativity the lower row must be 0 evaluated on
(& x).

This implies that f is g[t]/t™ invariant, since we proved that on C points &-f : J,g*(C) — A'(C)

is 0 and J,,g* is of finite type. Now since f is g[t]/t™ invariant, by the corollary above must belong

to C[J.P] and consequently we have f € C[J,,P] C C[JP]. O
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We conclude this section calculating the character of (C[]g*]g[[tﬂ under the action of Ly = —td;.
Recall that this action intertwines with the isomorphism

ClJg"] ~ Sym (g((t))/gllt]])

In particular we have Lo(]J¢,,) = nJ@,. Starting from this it is quite easy to compute the char-
acter of the P; 5. Py is an homogeneous polynomial of degree d; + 1. Therefore the n-th coefficient
of

P(t) =P(Jt)) = D Pint ™!

n<o0
(i-e. Pi ) will be a finite sum of products of the form J;! ... ]git with ) nj = -—n+d;.

Proposition 4.5.2. The character of Inv g*[[t] is given by

1

!
ch(Inv g*[[t]]) = T
Eni_d (1 —4 1)

>di+1

4.6 ((g) and Z(3)

The following theorem will be our goal for the rest of the thesis, therefore we will postpone its
proof, as the definition of the space of Opers, until the end of the thesis.

Theorem 4.6.1. The center of the vertex algebra ((g) is isomorphic in a (Aut O, Der O) equivariant way
to the algebra of reqular functions on the space of -G Opers on the disc: Opi (D).
Its character is given by the formula

1
1
ch(l(g)) = ——
I 1L =

i=Tni{>di+1

We will see that actually the two statements are actually separate and that that the second one
implies the first. We state them in one theorem here just for convenience.

In particular the proof of the second statement follows from the fact that gr ({(g)) = Inv g*[[t]]
this is the fact that we are actually use the most.

The algebra of functions on the space of Opers is a free polynomial algebra in the variables v;

C(g) = C[Vi,n]i:1,...,l;n<0
To proceed with our description of the center of the completed enveloping algebra we need
first a some little geometric definitions.

4.6.1 Loop schemes

Definition 4.6.1. Given a C scheme X (or a functor of C-algebras) we define LX as the functor of C
algebras

LX(R) := X(R((t)))
while to a morphism f : Ry — R, we first associate Lf : Ry((t)) — Rz((t)) which is naturally de-
finedas Y ;rit7' ' — Y . f(ri)t ', and then we associate the induced morphism X(R; ((t))) —
X(R2((t)). Notice that LX carries an action of Aut O in the same way JX does.
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Given any scheme X the functor LX is rarely a scheme, but in the situations we are interested
in it will often be an ind-scheme.

We consider the case we are most interested with, which is also the simplest one: X = A™.

Define for N > 0 subfunctors

LNA™(R) = {(x1(t), -+ -, xm(t) € A™(R((1))) : xi(t) € t NRI]}

It is easy to see that
m __ 15 m
LA™ =1limLyA

Denote by x; . the regular function on LA™ (which we recall to be defined as a natural trans-
formation LA™ — A'") which on R points

LA™MR) S (D migt ) o) gt ) ) i € AN(R)
j j

The ring of regular functions on LA™, is easily seen to be described as the projective limit of the
rings C[LnA™] which is isomorphic to

. Clinliz1,...,mmnez
CILA™) = Jim —2bni=lem;
[ } (1_ (Xi,n)nZN

Moreover is quite clear that the map LyA™(R) — JA™(R) which sends

(D rint™ i (D TNt ™

n<N n<o0

is a functorial isomorphism. So Ly A™ is an affine scheme for every N which is isomorphic to

Spec Clxinli=1,...,;mm<n—1

Consider now a polynomial function P = P(x1,...,%X;m) : A™ — A'. We want to describe
the induced regular function LP : LA™ — LA! in particular its composition with the coordinate
function x,, : LA" — A (defined as before) which we call P,,.

Consider our usual notation x;(t) :== Y ., xint "' and let

P(t) == P(x1(t)y ..., xm(t) = ) Put ™!
nez

Note that here there is a slight ambiguity since in the ‘definition” of the P;, infinite sums occur.
The following lemma resolves this ambiguity.

Lemma 4.6.1. The Py, above are well defined as elements of the completed algebra generated by the variables
Xi,m
C[Xi,n}i:1 yeery, MMEZ

P, € lim
" — (Xi,n)nZN
therefore Py, is a well function in C[LA™] and it corresponds exactly to the composition xn o LP.

Proof. These are just verifications that directly follow from the definitions. O
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We are now going to investigate what happens when we restrict the functions P, on the sub-
functors LyA™.

Remark 4.6.1. When we restrict P, to the subspace Ly A™ all the functions x,, with n > N vanish
(since they are 0 on that space). So in the computation of the P,, we can just make the substitution
xi = xi,N(t) =2 1N xit ™~ and compute the coefficients of P(t) = P(x1 n(t), ..., Xm,N(1)).

Note that when N > 0 and P is homogeneous of degree d the only P, which we know for sure
that are identically 0 are those for n > Nd, even if other cancellations may occur a priori.

4.6.2 Back to the center

We turn now to our case of interest: the one where X = g*. Note that g* ~ A%™9 a5 3 C scheme so
all we have done so far applies to this case as well. We group what we will need in what follows
in the following lemma.

Lemma 4.6.2. The group ]G acts in a natural way on all spaces Lng* and Lg. In addition the isomorphisms
introduced above
" Ingt — Jg"
intertwine with this action. In particular the induced isomorphisms on the ring of functions intertwine with
the action of JG(C) = GI[t]] and of g[[t]].
Let P; € Clg*] be the free generators of the algebra of invariant functions. And let the P; ,, be the reqular
functions on Lg* defined above. We have

ClLng 1™ = CPinJn <N(ais 1)
and this is a free polynomial algebra. Here the P; . are the functions defined above restricted to Lng*.

Proof. The fact that JG acts on Ly g* comes from the fact that LG acts on Lg* and ]G is a subgroup
of which preserves the space Lng*. This last affirmation may be proved for instance viewing G
as a matrix group. The fact that the isomorphism above intertwines with the action of G may be
proved viewing G as a matrix group as well.

The last properties follows from the fact that the isomorphism - tN intertwines with the action
of ]G and from the fact that under the isomorphism above P; , is sent to P; niNa, O

We are now ready to find out what is the relation of these algebras of functions with the en-
veloping algebra. Recall that by definition of U, (g) we have

U (8)/In = (U(81)/(1 = 1)) /In
where in both cases Iy is the left ideal generated by tNg[[t]].

Lemma 4.6.3. The PBW filtration on L~1K (9) induces a filtration on ﬂ.( (8)/In, the associated graded space

gr (U (8)/IN) has a natural structure of commutative C algebra which comes from the structure of algebra

on U (8).
In addition there is an isomorphism of C algebras

gr (U, (8)/In) =~ ClLng®]

which intertwines with the action of g[[t]] on both spaces.
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Proof. Consider the surjective morphism

gr (U(gk)) — gr (Uk(8)/In)

which arises from the quotient morphism U(gy) — U, (8)/In which preserves the PBW filtration
on both spaces. Surjectivity follows from the fact that the PBW filtration on the quotient is defined
exactly as the image of the filtration of the above morphism.

Is not difficult to see that gr (U(gx)) ~ Symg((t)) as an algebra: the commutation relations
of element in gy differ from the ones in g((t)) but the additional terms produce terms with lower
degree and a proof analogous to the one of the classical PBW theorem proves the assertion.

The kernel of the above map is easily seen to be the ideal generated by tN g[[t]], so gr ( U, (8)/In)
has a natural structure of commutative algebra and it is isomorphic to

Symg((t)

o7 (U (8)/In) ~ (Rt

Finally, similarly to proposition 4.5.1 the latter space is isomorphic, in a g[[t]] equivariant way,
to C[Lng*]. O

Next consider the isomorphism presented at the beginning of the section

gr(C(g)) = Inv g*[[t]] = C[Pinliz1,.. tin<o

and pick elements S; € ((g) such that Symb S; = P; _;. This means that S;, up to an element of
V. (g)<1, is equal to the polynomial P; where we make the formal substitution J¢ — J~! applied
to [0). This leads to the following fact.

Lemma 4.6.4. Foranyi=1,...,lany N > 0and any n € Z the image of

D((Si)ny) € U(@) — Un(8)/In

has symbol in gr (U« (§)/In) = ClLng*] equal to Py € C[Lng*].

Proof. This follows from the definitions. Recall that @ ((Si) ;) was defined as the n-th coefficient of

the sum of normally ordered products defined by Y[Ss, z]. Considering its symbol in gr (U (§)/In)
we may forget about the ordering (as the latter algebra is commutative) and put all terms of the
form Ji: withn > N equal to 0. Eliminating the lower degree term we find out that the expression
we obtain is exactly equal to the one of the polynomials P; ;, which was obtained with the formal
substitution J* — Jo(t) = Y _Jet .

This concludes the proof. O

Proposition 4.6.1. Let Iy be the left ideal in U, (§) generated by tNgl[t]]. Then the quotients of the center
by these ideals (which restricted to Z,.(§) are bilateral) is given by

Z(® CISi, myli=1

oA~ G LNSN(di+1
ZK(@) OIN ) B yLyIN S ( + )

in addition, this is a free polynomial algebra.
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Proof. Note that Zy_(§) C U, (@)f“t”. Since the operation of taking the symbol commutes with
the action of g[[t]] on the spaces Uy (§)/In and gr (Uy, (§)/In). We have the following chain of
inclusions:

Zy. () Uk, (8) gl U, () 2"
o <Zk(k/g\)rﬁjll\l> car <(kINﬁ)g t cor kITﬁ = C[Pi>ni]i:1y--~»1:niSN(di+1)

We know, from lemma 4.6.4 that for each P; ,, there is a central element, namely ®(S; p,,j), whose
symbol is exactly P; . All the above inclusions are therefore equalities and

Zy (@)
QT(ZKC @) N In ClPin Jiz1,... tmi<N(di+1)

The thesis follows from the following general fact.

Lemma 4.6.5. Let A be a commutative C algebra. Suppose A carries a filtration such that the associated
graded algebra is a free polynomial algebra.

grA ~ Clxilier

Then, taken any a; € A such that Symb a; = x4, A is a free polynomial algebra generated by the a;.

This proposition leads to this first description of the center of the enveloping algebra.

Corollary 4.6.1. Consider S; ) € Zx_(8) as above. Then the S; ) are algebraically independent. More-
over Zy._(8) is the completion of its free polynomial subalgebra C[S; n1li—1,...,1;nez by the ideals

(Si,tm)i=1,...,Lni>N(di+1)

Proof. Any algebraic relation between the S; [,,; must contain a finite number of terms. Therefore
we may consider an N sufficiently large such that all the terms appearing are of the form S; 1)
with n; < Nd;. Consider this algebraic relation to the quotient

Zy ()
Zi () NIN

we see that the algebraic expression itself (i.e. the polynomial in the S; [,;) must be 0, since the
quotient is the free polynomial algebra described above. This proves that the elements S; [,,) are
algebraically independent.

The second statement easily follows from the fact that Zy_(g) is the projective limit of the quo-

tients R
Zy ()

Zi. (8) NN
which are isomorphic to the subalgebra of the S; ,,j modulo the ideal generated by

(Si,[ni] )i:] yeesimi>N(di+1)
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Corollary 4.6.2. The homomorphism
u(c(g)) = Z«.(8)

induces an isomorphism .
U(c(g)) ~ Z, . (8)

Proof. Consider the Der O equivariant isomorphism gr ({(g)) = Inv g*[[t]] and as before let S; €
((g) be elements such that Symb S; = P; _; it follows by construction that Symb S; ,0) = P » for
every n < 0 and therefore

C(g) = ClSinl0)iz1,... 1,n<0

as a commutative algebra. In particular ((g) ~ Vo(S) for S = ®;CS; an abelian algebra of dimen-
sion 1. Now by Theorem 4.2.2 we have

Q(e(g) = fim Sbnlitontines

(Si,n)n>N

following the definitions and by the description we gave above of the center as the completion of
its subalgebra generated by the S; p,,; it easily follows that the induced map

U(c(g)) = Ze. (8)
is an isomorphism. O
Finally we state the following lemma, which can be found in [Fre07, Lemma 4.3.5]

Lemma 4.6.6. The completed algebra U(C[Op: g (D)] is isomorphic in a (Aut O, Der O) equivariant way
to the algebra of reqular functions on the space of “G-Opers on the pointed disc.

From which easily follows the description of the center of the completed enveloping algebra
we wanted to prove.

Theorem 4.6.2. The center of the completed enveloping algebra at the critical level Z,_(§) is isomorphic in
a (Aut O, Der O) equivariant way to the algebra of functions on the space of - G-Opers on the pointed disc

Z.(8) = ClOprg(D")]
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Chapter 5

Free field realization

In this chapter we begin with the proof of the description of the center of the vertex algebra V,_(g).
A pivotal role in the proof will be the construction of certain §., modules, called the Wakimoto
modules, they were first defined by Wakimoto [Wak86] for the algebra s, and then generalized
to an arbitrary simple algebra g by Feigin and Frenkel [FF88].

The exposition, as well as the theorems themselves, will be carried out using the vertex algebra
language. In order to define the Wakimoto modules we need to construct what is called a free
field realization of the vertex algebra V. (g) that is to say a vertex algebra homomorphism

Vilg) =V

where V is a ‘free field” algebra: a vertex algebra which is generated (in the sense of the reconstruc-
tion theorem) by fields a4(z) whose commutator is constant (i.e. its not a function of other non
constant fields). In this chapter we describe in detail the free field realization, while in the next

chapter we will describe Wakimoto modules and their properties.

5.1 The finite dimensional case

We start with our usual simple Lie algebra g. Let h be a maximal toral subalgebra of g and let b
and b_ the upper and lower Borel subalgebras induced by a choice of a basis A for the set of roots
®. Let ny and n_ be the upper and lower Borel subalgebras: ny = [b, b.].

g=n, ®hdn_

We denote by (eq)xco ((fa)xco resp.) a standard basis of ny (resp. n_) such that [h,e,] =
a(h)ey (resp. [h, fo] = —a(h)f for any h € b.

Let G be the connected simply connected Lie group associated to g. To the above decomposition
of g are associated various subgroups of G: the maximal toral subgroup H of G, the upper Borel
subgroup H C B, C G and the lower Borel subgroup H C B_ C G. Their Lie algebras are
respectively b, b_, b, . Finally let N, and N_ be the unipotent subgroups of G associated to the
nilpotent Lie subalgebras ny and n_.
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We consider the flag variety G/B_, it has a unique open B_; orbit
U:=Ny;-[1]cG/B_
The left multiplication by elements of G induces an action
GxG/B_. — G/B_
which induces an action by vector fields
g — Vect(U) = Der C[N,]

We will keep in mind that U ~ N, freely interchanging them, we list here some useful re-
marks.

Remark 5.1.1. Identifying U = N the action of g on Vect(N, ) satisfy the following properties:

¢ The action of n, coincides with the action of n., on the ring of functions C[N_] induced by
the left multiplication
N, x No — N,

¢ The action of h corresponds to the action of h on the ring C[N_ ] induced by the adjoint action

HxN; 5N, h-x=hxh'

® The exponential map ny — N, is an isomorphism therefore N (and hence U) is an affine
space ~ Al®+! where @ is the set of positive roots. The exponential map commutes with
the adjoint action of H, we will call a system of coordinates (y«)xcao, homogeneous if for
anyheb
h- Yo =—a(h)y«

We will only consider homogeneous system of coordinates.

Proposition 5.1.1. One can choose a system of homogenous coordinates Yy such that the action of n,. on
CIN.] = Clyq] satisfies
ex Yo =1 ex -Yp =0 unlessx < B

(Recall that « < (3 if and only if B — « is a positive root). In particular we may write

for some PE(y) € Clyal. The polynomials P have weight —B + o, in particular they cannot contain the
variable yg.

Proof. Consider any homogeneous system of coordinates y. It is clear that in the weight decom-
position of C[N.] only negative weights appear

CNy= @ CNraC

AE—Z D,
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Consider now « € @ we want to prove that e,yg = 0 unless 3 < «. Consider the action of § on
exYyp, we have
h-exyp = [h, ecc]yﬁ + ea(_ﬁ(h)yﬁ) = (ot — B)(h)eayfi

so it has weight « — 3, this lies in —Z, @, U {0} if and only if 3 > o. In addition if x = 3 we
find that ey« has weight 0 so it must be a multiple of 1. It is not 0 by the sl;-case (see the next
example) so the variables y, may be re-scaled in order to get

€x Yo =1 ex -Yp =0 unlessax <f

To check that the polynomials P§ have weight —f3 + o we just notice that for any h € b

«(h) (aya“ + BZ Pg(y)ay:) = [hyeqa] = x(h)ap + ﬁZ (h-PE(y) + fs(h)Pg(y))ﬁ

We give as an example an explicit exposition of the sl, case.

Example 5.1.1 (s[;). In the case of sl, and the its group SL, we have

G/B_~P' and U=A"={[u,—1]}cP’

1 —e u|l _ |u+te 0
G )BT en
(5 b )=z =152 e gy
(e V- -[atu -[05] e
—e 1 —1 —1—ue —1 ou

We introduce a very convenient notation which we will extensively use in what follows: we
denote by a}, :==yy and by a4 = By%'

By the considerations made so far, choosing an homogeneous coordinate system a, such that
exa} = 1 we obtain the following formulas for the action of g on N

we have the following

ey Ay, + Z Pé(a*)aﬁ
B>o
hi = ) —B(hiajag
B
fi— ZQE(Q*)Q‘_?,
B

The isomorphism U ~ N_ allows us to consider the action of right multiplication of N on UL
This induces a anti-homomorphism of Lie algebras
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n, — Der(N,)

we will write eR for the operator on C[N ] associated to —e, with this right action, so that the
map ey — ef is a Lie algebra homomorphism. This action will be very useful to us and therefore
we will keep considering alongside the left action of g.

Remark 5.1.2. We list a couple of useful remarks concerning this right action:

® The right action of n; commutes with the left action of n_:
[eoc) CE] =0

this follows from the fact that the action of left multiplication and the action of right multi-
plication on N, commute;

® The action of right multiplication on N is part of a bigger action of B constructed consid-
ering the isomorphism N4 C UR C B_ \ G, the induced right action of  is exactly ‘—’ the
action we already knew. In particular

[h, eR] = x(h)e}
and therefore the operators eX have a description similar to the operators e:

+Z Roc

B>«

aUB

5.1.1 C[N.] as a Verma module

We describe the g module C[N ] defined above as a coinduced module.

Definition 5.1.1. Let x € h* be a character. Consider the action of b_ on C, where § acts as x while
n_ acts like 0. We define the Verma module as the induced module

My i=Ind{ Cy = U(g) ®uw_) Cx

it is isomorphic, both as a vector space and a n; module, to U(n.).
Note that the the algebra U(n. ) has a decomposition induced by the action of h:

)= @@ Uy
YeEQ+
where Q =Z, P4 and U(ny), ={x € U(ny):h-x =vy(h)x forany h € h*}.

We define the contragradient Verma module M} as

M} := Coind{ Cy =Hom{{, (U(g),Cy)

where Homyfis, ](U( g), Cy) is the space of U(b_) linear maps U(g) — C, which are supported on
finitely many factors of the direct sum

= P up)eum,),

YEQ+
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Verma modules are described easily, thanks to their definition. They satisfy a lot of useful
properties. For instance for any g module N we have

Hom,_(Cy,N) =Homy(My,N) and Hom,_ (N,Cy) = Homg(N,MJ)
Proposition 5.1.2. The g module C[N_] is isomorphic to M.

Proof. Consider the pairing
Uy ) xCINg = C - (x4, P) = (x-P)(T)

This in n, invariant as well as § invariant with respect to the vector field action on the sec-
ond factor and to the action by minus right multiplication of n; and the adjoint action of h on
U(ny). We can prove by induction that given any polynomial P € C[N_] there exists an element
U € U(n;) such that U - P = 1. Indeed consider the maximal root amqx appearing in P, then a
sufficient iterate application of ey, - P eliminates this variable and we may proceed eliminating
all other variables. The pairing above is therefore non degenerate. In particular notice that under
the decompositions

Uy = € Ulny)y  CINLI= P CNLI

YeEQ+ YEQ+

It is quite clear, by h invariancy that under this pairing C[N]_, — U(n, )} in particular we obtain

CIN4] — u(fhr)v = @ U—(“H;
YeEQ+

This is an isomorphism since it is injective and by equality of dimensions of the spaces C[N,]_
and U(n, ),. Now consider the morphism

CIN,] — Co P — P(1)

this is easily seen to be a morphism of b_ modules since we are considering the action of g on
N4 = U C G/B_ and therefore for any a € b we have a -1 = 1. This morphism, since the coin-
duction functor is the right adjoint of the restriction functor and since M§ = Coindj Co, induces
a morphism of g modules C[N ] — M} using the identification of n, modules M} = U(n )" we
find that this homomorphism coincides with the one induced by the pairing above and therefore
it is an isomorphism. O

As a corollary, using the identification of n; modules C[N,] = U(n, )", we may define other
structures of g module on C[N_] defining

CIN]y =M forx € h*

These other g structures may be obtained in a different way. Consider the Weyl algebra of
differential operators on N, = U:

D(U) = D(N,) :=<C[ya, 63]
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0

It may be described as the free algebra in the variables af, = ya, aa = 7, subject to the relations

[ak, aE] =0 lag,apl =0 [aq, a’fs] =0u,B

This algebra carries a natural filtration D<,, defined by the order of the differential operators. D«
is easily seen to be a Lie subalgebra of D, it is spanned by elements of the form

3 Paly)ge- +QlY)

In addition we have a short exact sequence of Lie algebras
0— C[U] - D<y — Vect(U) — 0

The map D<; — Vect(U) is not defined trough the natural action of D on the space of functions
C[U] = C[N.] but as the action of D<; induced by the bracket on its abelian ideal C[U].

Note that this sequence is actually split, since we may identify Vect(N.) with the Lie subal-
gebra of differential operators of order < 1 which kill the constant function 1 € C[N,] with the
natural action of D<y on C[N,].

Lemma 5.1.1. Let
0—-L1—-L,—=1L3—0

be a split exact sequence of Lie algebras, and suppose Ly is an abelian ideal of L,. Note that the adjoint
action of L, on Ly induces an action of the quotient L3 (since Ly is abelian). Therefore Ly is naturally an L3
module.

Let g be another Lie algebra and suppose we are given a morphism g — Lz. This makes Ly intoa g
module. Then the set of liftings up to isomorphism

0 L L, Ls 0
S . T
g
is in bijection with
H1 (g) L )

Using the above lemma, and noticing that by the Shapiro lemma

H'(g, Coind§ Co) = H' (b, Co) = (b_/[b_,b_])* = b
It is not difficult to see that composing the lifting g — D<; with the natural action of D<; on
CIN,] we obtain the structure of g module M} on C[N].
5.1.2 Explicit formulas
Let (1)i=1,...,1 the chosen basis A for the root system ® and let ey, h;, f; be the induced standard

set of generators for g. The action of g on C[N, ] = M} may be written, with respect to the algebra
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D<; =Cla%, aq]

ei — Ay, + Z PE(a*)aB (5.1)
B>

h r—)Z B(hi)agap +x() (5.2)

fi — Z QB “Jag +x(hi)ak (5.3)

This may be directly checked using the definition of M}, and comparing it with M§ = C[N,].

5.2 The case of g,

5.2.1 Overview

We now turn to our case of interest. We are going to define the analogous notions of algebra
of differential operators and of vector fields in the loop setting and in the vertex algebra setting.
Our first goal will be to find a ‘loop version’ of the exact sequence we encountered in the finite
dimensional case, we will find a huge difference though: the sequence is non split and it is not
possible to lift the morphism g((t)) — Vect(LU)

0 — C[LU] —— A%] —— Vect(LU) —— 0

This difficulty is partially resolved: there exists a commutative diagram

0 — C[LU] —— A%, —— Vect(LU) —— 0

S

0 C1 B, g((t)) —— 0

the critical value k. enters the picture again.

5.2.2 Action of g((t)) by vector fields
Consider the open subset U C G/B_ as before. Applying the loop functor we obtain an action
LG x L(G/B_) — L(G/B_)

This action induces an action of g((t)), the Lie algebra of LG on the ring of functions C[LU] obtained
by vector fields. We wish to describe this action in terms of the finite dimensional action g — C[U].
Recall that the ring of functions on LU is isomorphic to

CILU] = Jim T %nlac@ nez
—  (ahkn)n>N
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We change a little bit our usual notation and define aj ,, to be the regular function

abn i LUR) = ATR)  (xp(t))p = (D xpnt ™p — Xen
nez

In addition let ag m be the vector field defined by

Aom : LUR) = TLUR)  (rp(t))p = (Y1t ™)p = (D (1p,n + €8p,adn,—m)t "),

n

Note that following the definitions we have that the action of the vector fields ag . on the
functions aj ,, is given by the following:

ag m - af;m = 5%[35“),“1 e C[LU]

We proceed describing the Lie algebra of vector fields on LUL. We denote by a n the vector
field

Proposition 5.2.1. Vect(LU) is a Lie algebra isomorphic to the Lie algebra of formal series in the variables
ay n» ap,m, of the form
Z Pﬁ,n(a*)aﬁ,,n Pﬁ,n(a*) e C[LU]
B,neZ

for which the Py n satisfy the following property: for each N > 0 there exists a K > N such that each Py,
forn < —Kiis in the ideal generated by (ay, ,,)n>N. The bracket is defined as

0 oP
[Z Pgnl(a®)ap n, Z Qy,m(a*)ay,m} = Z (Pﬁ,n agﬂy’m Qy,m — aa*ﬁyn Q%maﬁ»“)
B,m Y, m B,—

B?y’n$m n y‘im

Proof. Letv: LU — TLU be a vector field. Consider the coordinates aj ,,, a5, on TLU defined on
R points as

af;,n( Z (rgn + erg’n)t*ﬂ) 5 Ten
nez

azs (D (rpn+erg )t ™), = Ten
nez

By hypothesis aj, , ov = aj , where the regular function on the right hand side is the usual

coordinate on LU as defined above. Let Py _,, := a}$, ov, itis a regular function on LU. Note that

by construction the vector field v is described as follows (on R points)

V(Y Tt Me = (Y (rpn+ePp (M)t

nez nez

V= Z Pﬁmag‘n

B,mEZ

We write

The condition for such a function v to be well defined on LU is that the series on the right hand side
has to be a Laurent series. Consider now the subspace Ly U which is affine with ring of coordinates

A= (C[ch,n]n<N

86



And consider the its universal element
XN € LyU(A)

this must be mapped through v to a Laurent series, let’s say of pole at most M. It follows from
the Yoneda lemma that for any C algebra R and any element x € LyU(R) the Laurent series v(x)
has pole at most M. From this discussion easily follows the condition on the Py stated in the

proposition.
On the other hand it may be directly checked that each formal series of the above form induces
a well defined vector field. The computation of the bracket is straightforward. O

Consider now the formal power series

ay(z) := Z Qpnz ay(z) = Z am,nz_“_1

nez nez

Lemma 5.2.1. The Lie algebra homomorphism g((t)) — Vect(LU) is given by the following formula:

ei(z) = an,(z) + ) Phla*(z)ap(z) (5.4)
B>
hi(z) = ) —B(hi)aj(z)ap(z) (5.5)
B
fi(z) = ) Qhla*(z))ap(z) (5.6)
B

Proof. Consider the morphism induced by the action of G on G/B_
gxUuU—TU
Let ], be a basis for g and let ]}, be the basis for g* associated to the basis J,. Suppose that |, acts
on C[U] by the vector field
a 0
Z Paly) e

04

Let Cly«) = C[U] and let Clyy,y§] = C[TU]. The expression above may be restated saying that
induced morphism on the ring of functions

Clya,ys) — Clyo) ® CIJ%]

is characterized by the formulas
Yo = Yo U(&Hzpi(y)®]2
a

This allows us to describe the vector field associated to an element |, ® t™ € g((t)).
For any C algebra R the map
g(R) x U(R) — TU(R)

is described thanks to the above remark by

(]a X To, (Toc)cx)) — (Toc + ep&(T)TO)cx

87



applying this formula when R = R((t)) and 7o = t™ we find that the vector field associated to
Ja ® t™ is given, on R points by

(Ta(t)) o = ( Z T'oc,ntin)oC — ( Z Tcx,ntin + €P§(T(t))tn)(x

nez nez

If we write P& (r(t))t" = ) | oz Qg’m(r)tm“‘ then the Qg ,, actually define functions on LU
and the associated vector field is
Z ngmaoc,m+n

o,m

which is exactly the coefficient of z ™~ of the expression 2 o P&la*(z))ax(z). O

5.2.3 The completed Weyl algebra AS

Consider A® the algebra generated by elements a, ,,,ap,m for o, 3 € @ and n,m € Z subject to
the relations

[a:%n’ aE,m] = [a“»m a(i,m] =0 [aoc,m aE,m] = 50&766n,7m

Consider a topology on A® generated by the subspaces In m the left ideals generated by ay n :
n > N and aE,mm > M.

Definition 5.2.1. Define the completed Weyl algebra A9 tobe the completion of A? for the topology
induced by the In,m. The product on A? may be checked to continuous for this topology and

therefore induces a structure of associative algebra on A9,
An element of A? may be written as an infinite sum

Z Poc,N aoc‘n + Z ro,ma;,m ch,n) Q[S,m S Ag

n>N m>M

*
o,/

clear that AJ ~ C[LU]. Finally we define K%l to be the completion of the subspace A%, which is
defined to be the span of products of elements of A§ and elements ay n.

Let Rg be the abelian complete subalgebra generated by the a}, ., following the definitions is quite

Let’s describe in more detail A% . Note first that the subspace A%, is naturally a Lie algebra,
with the bracket induced by the structure of associative algebra on A?. Since the product in A? is

continuous so is this bracket, /N\’3<1 carries therefore a natural structure of Lie algebra.
In addition a general element of A9 may be written as an infinite sum

Z Pﬁ,naoc‘n+ Z Z sz,ﬁ,k,maﬁ,kafx‘m—i_ Z Qgc,mazc,m

n>N m>My keK, m>M;,

where K, C Z s a finite set and Py n, Q) g 1 s Qa,m € AJ.
We are ready to define the exact sequence we are interested in

Lemma 5.2.2. There exists an exact sequence of Lie algebras

0 — C[LU] AL, Vect(LU) — 0
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Proof. We claim that the linear map that sends an element of the form

ZPOC,TIQ(X,TI_F Z Z Q(])c,ﬁ,k,maﬁkazc,m_l_ Z Q(zx,mazc,m

n>N m>Mj k€K m>M;

to the vector field

Z Poc,naoc,n+ Z Z afx,szx,B,k,maBsk

n>N m>Mi k€K

is an homomorphism of Lie algebras whose kernel is exactly Kg = C[LU]. As a linear maps it is

clearly well defined and is kernel is 7\3. It remains to show that it is a Lie algebra homomorphism.
To see this it suffices to notice that the map is continuous and it is a Lie algebra homomorphism
on the quotients. Since the bracket on both (complete) spaces is continuous this implies that the

map K‘%] — Vect(LU) is a Lie algebra homomorphism as well. O

To proceed with our goal of lifting the homomorphism g((t)) — Vect(LU) we are going to need
the ‘local” versions of these Lie algebras. The vertex algebra approach will be crucial.

5.3 Vertex algebra interpretation

We are now going to define a vertex algebra M closely related to the completed Weyl algebra AS.

Definition 5.3.1. Consider the A? module M, generated by a vector |0) and such that
g nl0) =0Vn >1 Qe,nl0) =0Vn >0

x,m

Equivalently, consider the abelian subalgebra A} generated by the elements aj ,,, ag m withn > 1
and m > 0 and consider its trivial one dimensional module C|0), finally define

Mg = Indj:s Clo) = A® @45 CJ0)

Notice that since A? = A®? ® A as aright AY module where A? is the abelian subalgebra gener-
ated by aj, ,,,ap,m forn < 1and m < 0. We have

My ~ AY
as vector spaces.
We define a structure of Z, graded vertex algebra on M, as follows:
* (Z4 grading) We set deg ao; n; - -+ Qo ni @fy my -+ G, [0) = =2 i — 3 my;
¢ (Vacuum vector) We set |0) as the vacuum vector;
¢ (Translation operator) We define the translation operator T by the formulas

T|O> =0 [Ta acx,n] - _nacx,nfl [T) a:‘n} = (—TL - ])a:,n 1
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® (Vertex operators) We set

Y(ae,—110),2) = aal(z)  Y(agcl0),z) = ai(z)

Y(aoy,ng + e+ Qo ni @8 m, ...a}‘;m\0>,z) =

1 1 —nq— —nyg— —my % —my ok
1_[(7mi1)!1_[(7mj)!:az ! Iam(z)...az k 1c1mk(.7.)i)Z 'a*(z)p, ...0, "tagp, (2)

Thanks to the reconstruction theorem to prove that this defines a structure of a vertex algebra
it is enough to show that the fields a(z) and a} (z) are mutually local.

[aa(z), (W) = ) [aam @hmlz "W ™ =) S0 pbn,mz "W ™ =54 p8(z— W)
n,m

n,m

As in the case of V. (g) and the enveloping algebra U, (§) we may interpret vertex operators on
My as vertex operators with coefficients in AS.

Proposition 5.3.1. The complete algebra UL(M,) is canonically isomorphic to AS. In addition, the map
U(M,) — U(M,)

is injective and hence U(Mg) is naturally a Lie subalgebra of/ig.

Proof. The proof of this statement is completely analogous to the proof of theorem 4.2.2. O

We denote by ;\g‘loc = Kg NU(M,), by /Ximoc = /X% NU(M,) and by Tioc == Im(/ﬂiiuoc —
Vect(LU)). We have an exact sequence - B B

A0 g
0— AO,loc — Aguoc — Tioe — 0

It is not difficult to see that K% 1oc 18 the span of the Fourier coefficients of operators of the form
Y[P(a*)aﬁ,,1 |0>,Z] = P(a*(z))aﬁ(z) .

By the definition of the morphism /ig« — Vect(LU) such series are sent to the series of vector
fields -
Pla*(z))ap(z)

It follows that the image of g((t)) in Vect(LU) is actually contained in Ti,, we have therefore a
diagram

AQ A9
0 AO,loc Agl,loc TlOC 0
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5.4 Cocycles and liftings

Consider an exact sequence of Lie algebras

0—=bh—-Il—>1—-0

where | is an abelian ideal of I. Since b is an abelian ideal the adjoint action of lon h factors through
an action of . B B

The Lie algebra [ is called an extension of I. Choosing a splitting t : [ — [ we can associate to it
a 2-cocycle with coefficients in b

WX Y) =DV — LX), Y w e HA(Lh)

where b has the [ module structure defined by the adjoint action of I
The following lemma will be crucial for us.

Lemma 5.4.1. Let h,~[, [ as above and let w € H2(1,b) be a cocycle defining the extension.

Suppose we are given another Lie algebra g, a g module b’ and a 2-cocycle o € H?(g,h') which defines
an extension g.

Suppose additionally that we are given two Lie algebra homomorphisms 3 : §' — hand « : g — [. Then
if the cocycles

B.oand o*w € H?(g,b)

are equal, there exists a lifting g — Usuch that the following diagram is commutative.

0 b 1 [ 0
BT i Toc
0 b’ g g 0

Our goal is to apply the above lemma in our setting, in particular we are going to consider the
diagram

A9 AQ
0 ’ AO,loc ’ Aguoc — Tloe — 0

I T

0 C . g((t)) — 0

and denote by w the cocycle in H?(g((t)), 7\3,1“) obtained by pullback of the cocycle which
defines the extension of the upper row, and by o the cocycle defining the extension §i_ . In what
follows we will prove that
Lo =w e H(g((t),Ad 1,c)

We will use the following lemma which is proved in [Fre07] lemma 5.6.7, which we state in a
slightly different fashion.
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Lemma 5.4.2. If the two cocycles 1,0 and w, viewed as bilinear maps

2
Nsl(®) = AS .
coincides when restricted to h((t)) they are actually equal as elements of
Lo =w e H(g((1),A§ ,.)

Proof. See [Fre07, Lemma 5.6.7]. O

5.4.1 Computation of the cocycle, the Wick formula

We proved before that the Lie algebra Ty, is spanned by the Fourier coefficients of series of the
form
Pla”(z))ap(z)

choose the splitting i : Tjoc — /7\2] 1oc Which sends the n-th coefficient of the series above to the
n-th coefficient of the normally ordered product

:P(a*(z)) - ap(z):

this is just a linear map which composed with A% loc — Toc is the identity.
To compute the cocycle must evaluate the expressions

[L(X), 1Y) = i[X, Y]) with X, Y € g((t))

In order to do this we state the so called Wick formula, which applies in our case, but is valid
not only for the vertex algebra My but for all the so called free field algebras.

Definition 5.4.1. A vertex algebra V is called a free field algebra if it is generated (in the sense of
the reconstruction theorem) by fields a such that the coefficients c;(w) in the expansion

(aalz)apwl] = Y en(w)ls(z—w)
m>0 ’
are constant (i.e. ¢ (W) € C[wt']] € End V[w*'])).

For a moment we treat the case g = sl;, so that we may eliminate the index «, the general case
is treated no differently. Therefore in what follows we write a* instead of a}, and a instead of a,.
Consider the OPEs

a(z)a*(w) = z—w+ sa(z)a*(w): (5.7)

a*(z)a(w) = — _] W+ ca*(z)a(w) : (5.8)

ora*(z)oya(w) = (—1 )“%—F 102 a*(z)o) a(w): (5.9)
(n+m)!

dMa(z)da*(w) = (—1)™ ! +:0a(z)oya*(w) : (5.10)

(Z _ W)n+m+1
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Where as usual we consider the expansion of ' in positive powers of w.
Our goal is to give a formula to compute the product P(z)Q(w) where P and Q are two nor-
mally ordered monomials in the formal series 9,n“(z), 0] a*(z) (resp. w). This formula will
express this product in terms of simpler normally ordered product.
A single pairing between P(z) and Q(w) is the choice of an ordered couple of the form (37 a*(z), 0 a(w))
(or (07 a(z), 0 a*(w)) where 07 a*(z) appears as a factor of P(z) and 0]} a(w) appears as a factor
of Q(w). We attach to such a pairing the rational function

. (Mm+m)!

frm(z,w) = (=1) Z—w)ynrmit

which appears in the OPE of the two factors. Note that a single pairing may appear multiple times.

A multiple pairing is a disjoint union of single pairings. To a multiple pairing B we associate
the rational function fg (z, w) which is the product of all the rational functions of the single pairings
appearing in B.

We define (P(z)P(w))g as the product of the two polynomials after we remove all the factors
contained in the pairing, if all the factors are contained in B we set (P(z)Q(w))g = 1. Finally we
define the contraction of P and Q for the pairing B as the normally ordered product: (P(z)Q(w))s :
multiplied by the function fg (z, w), in addition we define also the contraction for the empty pair-
ing as

B epairings

where we sum over all pairings B, including the empty one, counted with multiplicity. This statement holds
also if we consider P and Q as series with coefficients in AS.

Proof. See [Kac98, Theorem 3.3]. O

We are going to use the Wick formula in the particular case of polynomials of the form :
P(z)a(z) : and : Q(w)a(w) : where P and Q are monomials in the 97 a*(z) only. Monomials of
this type are exactly the vertex operators of monomials of the form Pa_; and Qa_; respectively,
with P and Q monomials in the variables a; n < 0.

This of course moves us a step further in the calculation of the cocycle since the product
Y(Pa_1,2)Y(Qa_1,w) contains all the information of the commutator [Y(Pa_1,z), Y(Qa_1,w)].

Lemma 5.4.4. The following formula holds
Y(P(l_] ) Z)Y(Q(l_] ) W) = Y(P(l_] ’ Z)Y(Q(l_] )W) :

1 2Q
+ Z m : Y(P)Z)Y<aa* Cl],w) :

n>0 -n
1 oP
— 'Y _ Y :
2w (aa*n“ "Z> o)
1 oP 0Q
— Z PR :Y<6a* ’Z>Y<6a* ,w):
n,m>0 -n -m
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Proof. It suffices to apply the Wick formula, after noticing that the contraction with respect to the
pair (07 a*(z), a(w)) (or (a(z),d}ya*(w))), counted with multiplicity, corresponds to taking the
derivative of P with respect to a* ., and to eliminate the factor a_; from Qa_j. O

We are ready to state a compact formula for our two cocycle.

Proposition 5.4.1. The cocycle w for the extension

0 Rg,loc Rgg] ,loc Tl,oc 0
calculated through the splitting i defined by the normal ordering is given by the following formula
w((Pa_1)u, (Qa—1)s)) =

oP 0Q
- 5 (et e Y (e w) aw
Z J( m+m+1)! oar, 0ar lz=w

n,m>0

Proof. We compute first the commutator between the vector fields formal series P(z)a(z) and
Q(w)a(w). We claim that it is equal to

P(z)afz), Qwlalwl) = 3 aalz —wiP(z) g (wlatw) = 3 a26(z— w3 —(z)Qlw)alz)
n>0 - n>0 n

which is just a verification using the fact that
l[a(z)oyya™ (w)] = 03,8(z —w) [a(w),07a*(z)] = 07d(z —w)

In addition the Wick formula implies that the commutator between the series Y(Pa_1,z) and
Y(Qa_1,w) is given by

0
[Y(Pafh ) QCI 1, W Zan z—=w (P Z)Y<aa§na1)w>:
n>0
oP
- Mqdlz—w (a —a_ 1,Z>Y(Q,W
n>0
— Z a’vl\fmﬂé(zw):Y( af ,z>Y( 69 ,w):
0 oa* oa* .,

It is quite clear that the first two factors of this expression are exactly the normally ordered product
of the commutator [P(z)a(z), Q(w)a(w)]. What remains is the last row, whose (k, 1) coefficient is
given exactly by the formula we wanted. O

Corollary 5.4.1. The extension

A9 A9
0 AO,loc A§1,loc TIUC 0

is non split.
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Proof. We compute the cocycle for the elements h,, defined by the formula

Y(aga_1,z) = :a*(z)a(z): = Z h,z ™!
nez

. * .
h, = E PO On_k :

keZ

so that

According to the formula of proposition 5.4.1 we have
(b ) = = [ (022" W ™o dw =~

On the other hand we find that the image of h,, in Ty, is the vector field hy,: >
quite easy to see that these vector fields commute with each other.

« .
nez Qcan—xk. Itis

If the extension was split there would exist correction terms f,, € ;\g‘loc such that

hyy + fo i + f] =N8n,—m + hp - frp — By -, =0

But the h,, are ‘linear’ vector fields (i.e. linear in the coordinates a* , on LU), therefore they cannot
produce such a constant function. O

The elements h,, are not arbitrarily chosen: they are exactly the normally ordered vector fields
corresponding to the action of h((t)),

Proposition 5.4.2. Let w € H?(g((t)), 7\3’10 <) be the cocycle obtained by pullback of the cocycle induced
by the splitting i for the upper row, and let o the cocycle defining the central extension §... Then w and
Lo are equal if restricted to h((t)).

Proof. The formula of proposition 5.4.1, applied to the vector fields

hi(z) =) B(hi)as(z)ag(2)
B

gives us by bilinearity, as in corollary 5.4.1

Wi hjn) =Y Bh)Y(M)8y,s(—Nbn, m) =—ndn-m Y B(hi)B(hy)
B,y

BeED

Since h; acts on the subspace gg by multiplication of 3(h;) it is clear that the expression above
equals to
1
—nén,,mi Kg (hi, hj) = L4 O‘(hi, h.j )
O

Combining this result with lemma 5.4.2 and with lemma 5.4.1 we obtain the following propo-
sition.
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Proposition 5.4.3. There exists an homomorphism of Lie algebras g, — ;\gq loc Such that the following
diagram commutes: -

0 —— R(g),loc — Rgg],loc Tioc 0
0 C [0 g((t) 0

5.4.2 Explicit formulas

Theorem 5.4.1. There exists constants c¢; € C such that the homomorphism g, — g((t)) is given by the
following formulas

ei(z) = an,(2)+ ) :Ph ap(z) :
B>oq
z)—— Y B(hi):ap(z)ap(z):
BED
z) — Z : QE(Q*(Z))QB(Z) : +ci0.ay, (2)
BeD
Proof. See [Fre07, Theorem 6.1.3] O

In addition we may do all the previous steps considering the right action of n,. as vector fields,
the following proposition is quite clear from the construction.

Proposition 5.4.4. The same construction performed for the right action eX on C[N ] a Lie algebra homo-
morphism
Ln, — AL, eR(z) = aqlz +Z PR %(a ap(z):

B>o

which commutes with the fields ey (z).

Note that by the initial remarks P}* does not contain the variable y and therefore there is no
necessity of considering the normally ordered product.

5.5 Free field realization

Recall that in the finite dimensional case we could attach to any x € h* a structure of g-module on
CIU], obtained by modifying the standard action by vector fields and for which C[U] ~ M.

We are now going to construct an homomorphism of Lie algebras which ‘glues togheter” all
these different actions and then consider its vertex algebra analogue.

Consider the quotient G/N_ and the map
m:G/N_ — G/B_
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this is a G equivariant morphism when we consider the action of G on both spaces by left
multiplication. Let 7t (U) be the affine open subset of G/N_ defined by the preimage of U C
G/B_. The multiplication

Ny xH—-a (U  (x,h)— xhN_

induce an isomorphism. The morphism 7, under the isomorphism 7t~! (1) = N, x Hand U = N
corresponds to the projection on the first factor.

As before the action of G induces an action of the Lie algebra g by vector fields on the space
71 (U) therefore we obtain an homomorphism

g — Vect(U x H) = Vect(U) ® C[H] & C[U] ® Vect(H)

Denote by b; € Vect(H) the vector fields associated to h; € ) through the natural Lie algebra
homomorphism

h — Vect(H)

We may describe the homomorphism g — Vect(N_ x H) in terms of the homomorphism of the
previous section g — Vect(N, ).

Proposition 5.5.1. The homomorphism g — Vect(U x H) may be described in terms of the coordinates
a’ on U = Ny and the vector fields a, and b as follows

ei — dq, + Z P}s(a*)ag

B>oci

hi — Z—B(hi)a?;a@ + bi
B

fi— Z Q}j(a*)aﬁ + a’&ibi
B

Proof. We consider the isomorphism U x H=N_ x H.

(ei) It is clear that the action of left multiplication restricted to the subgroup N coincides with
the left multiplication on the first factor, hence the action of e; is described by the same formulas
we obtained when we studied the action by vector fields on U = N;

(hi) Note that the action by left multiplication of G restricted to H sends U x H to itself. Since
Hnormalizes N we have that this action may be described as

hy - (x,h2) = (hyxhy ', hihy)

It follows that the vector field associated to h; is equal to the sum of the vector field induced by
its action on N plus the vector field induced by left multiplication on H which is exactly what we
wanted.

(fi) We identify N x H with BB_/N_. We do some calculations considering a general element
g € n_(R) € N_(R[e]) let (x,h) =xh € N, x H and write

g(xh) = (g-x)v(g,x)B(g,x)h  with (g-x) € N, (R[e]) andy(g,x) € H(R[e]), B(g,x) € N_(R[e])
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This shows that for any fg € n_ the vector field associated to fg is of the form
1

> PBlaax+ ) QP(a)bs

xed i=1

where the polynomials QP (a*) are functions on N ;. Notice that in particular for the generators
fi we must have that Q. has weight —«;. Since the weight spaces for the simple roots are one
dimensional it follows that there exist complex numbers ci; € C such that

Q]fxi(a*) = CijQy,

By computing the bracket between the vector fields associated to e; and f; one easily finds that
ciyj = 0if i # j. Finally to compute ci; we reduce ourselves to the sl; which we treat in the
following proposition. O

Proposition 5.5.2 (s, case). The homomorphism sl, — Vect(U x H) is described by the following
formulas

e—a
h+— —2a*a+b

fi—» —(a*)?a+a*b

Proof. We just need to compute the action of f. We treat elements of N x H as classes in BB_/B_.
Notice that the vector field b in the coordinate i : H — C for which

_ (u(h) 0
h‘( 0 u(h)‘>

we have b = —pd,, now consider any A € R, u € R*. To compute the action of f as a vector field
we need to computer

Co6DE 210 M) 0 )]

It is then clear that p((—f) - x) = p(x) — eA(x)p(x) and therefore the b component of f is exactly
Ab. O

So the homomorphism g — Vect(U x H) has image contained in the subalgebra Vect(U) &
ClU]®b. Considering the loop case, as in lemma 5.2.1 we obtain an homomorphism of Lie algebras

g((t)) — Vect(LU) @ C[LUI&LH

where & denotes the completed tensor product of the complete vector spaces C[LU]J, Lp. This
homomorphism is described by the following formulas on the generators.
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( '—)a(xl + Z Pﬁ )

B>oci

z) - Z —B(hi)ag(z)ap(z) + bi(z)

HZQB p(2) + ay, (2)bi(z)

where bi(z) =Y _ _,binz " ! and by ,, is the vector field on LH induced by the action of h; y,.

nez

We want to emulate the work we did in the previous section in this new case, hence we would
like to give a vertex algebra interpretation of these new fields. We define a new vertex algebra in
full generality (even if for now we only need the simplest version of this algebra), the construction
is analogous to the construction of Vi (§)

Definition 5.5.1. Let h be the abelian finite d1mens10nal Lie algebra with a basis (bi)i—1,...,1. Let k
be a bilinear anti-symmetric form on . Consider B« the affine algebra associated to b and k. We
denote its vacuum module

718 = VK(h)

The following ordered monomials form a basis for 7§
bi1 R Lm,‘ﬂm|0> ny < 0

Note that for k = 0 this vertex algebra is actually abelian, we denote it simply by 7. This is
the vertex algebra we are interested in for now.

To proceed in our quest to obtain a §., module we need to find an appropriate extension of the
Lie algebra Vect(LU) & C[LU]&Vect(LH). Note that this is actually a direct sum of Lie algebras
(i.e. the first and the second factor commute).

We start by defining the local Lie algebras as in the previous case. Let Tioc = Im(;&g<1 loc

Vect(LU)) as before and let I?

9 to be the span of the Fourier coefficients of series of vector fields
of the form

P(a*(z))bi(z)

it is of course an abelian subalgebra of the Lie algebra C[LU]®Vect(LH).
We consider the exact sequence

0 'KO loc A<1 ,loc & I TLUC © I 0

loc loc

and notice that the image of the homomorphism g((t)) — Vect(LU) & C[LU]®Vect(LH) is

contained in the subalgebra Ty ® Ilo .

Lemma 5.5.1. The Lie algebra /1\<1 toe ® 1T, . is naturally a Lie subalgebra of UMy ® 7). In addition
M, ® o is still a free field algebra, therefore the Wick formula holds.

Proof. This is completely analogous to the M, case. O
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By the above lemma we may consider the splitting i : Tioe ® If,, — AL, Loc ® I{, induced by
taking the normally ordered product and compute the associated cocycle ‘with the Wick formula.

Proposition 5.5.3. The cocycle wnew calculated with the above splitting is equal to the cocycle w €
Hom(/\2 g((t)), Ag’loc) calculated in the previous section.

In particular its restriction to h((t)) is equal to .o therefore there exists an homomorphism of Lie
algebras

ﬁKc - Kggl,loc ® I%oc - U(Mg ® ’HO)

5.5.1 Explicit formulas

The above morphism we obtained is described on the generators by the following formulas:

eiz) o (D) + Y Ph(a’(2))ap(a)

B>o
z)- — ) Bl(hi):aj(z)ap(z) : +bi(z)
BED
z) — Z : QE(G*(Z))ag(Z) D +ci0zag, (2) + ag, (2)bi(z)
BED

5.5.2 Vertex algebra interpretation

Our next immediate goal is to translate the above homomorphism of Lie algebras in the vertex
algebra language. The reason behind this and the vertex algebras we are considering are way
smaller than the completed algebras we may consider instead (for instance the homomorphism
8. — U(M, ® mp) induces an homomorphism U, (§) — U(M, ® 70)) and therefore more man-
ageable.

Lemma 5.5.2. Let V be a Z-graded vertex algebra. Then defining an homomorphism of Z graded vertex
algebras
Vil(g) =V

is equivalent to the choice of vectors EIO} € V such that the coefficients
vJe10),2) = 3 Jaz”
nez
satisfy the commutation relations of gy with1 =id.
Proof. Given an homomorphism of vertex algebras ¢ : Vi.(g) — V we have

TR = Y (}Z) o)., =Y (’;) DT 110V e

k>0 k>0

= (g) @([J%T°1-110))nm + <T) O(k(J% T2)10) ) nsm—1

=[], Ib]n+m +nk(J9, Ib)én,fmidv
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So the elements J9,, satisfy the commutation relations of §,.

On the other hand if we are given elements ﬁ\O) with the property above it is easily checked
that the linear map V. (g) — V defined by

Al Jamo) = ] . ﬂ'j:\\O)
is an homomorphism of Z graded vertex algebras. O

Note that the operators of the explicit formulas, defining the action of §x on My ® my come
actually from the vertex operators of certain elements in the vertex algebra My ® .

Y((am,_l +Pg(az§)aﬁ,_1)|0>,z) — a2+ Y :Ph(a*(2))aplz):

B>
Y( ZB )ag oap,—1 +bi,—1)[0), ) Z B(h ap(z) : +bi(z)
BED
( Y Qplaplap, 1 +ciay,, 1 +ak, obi1)I0), ) > :Qpla*(2))ap(z): +cid.al,(2) + ab, (2)bi(2)
Bed

And it is possible to check by induction that for all basis elements ey, fo of g the associated
series ey (z), f«(z) are of the form Y(-, z).
This remark, combined with lemma 5.5.2 implies the following.

Theorem 5.5.1. There exists an homomorphism of vertex algebras
Vi (9) = My ® Mo
such that

e, 110) = (ao,, -1+ Y Phlai)ap,1)l0)

B>a
hi,—1/0) — Z —B(hi)ag pap,—1+bi,1)I0)
BED
f1’7]|0 Z QB ao)aﬁ —1 +C1 oq,—1 _“(10C obl‘,1)\0>
BeED

5.5.3 Deforming to other Levels

We present an extension of the previous theorem to an arbitrary level k. For the proof, we refer to
[FBZ04][Theorem 6.2.1]

Theorem 5.5.2. There exists an homomorphism of vertex algebras

Vi(g) = Mg @ mg "
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such that

ei,—110) = (aoy,—1 + Z Ph(ag)ap,—1)[0)

B>
hi, 110) = (Y —B(hi)aj oap, 1 +bi,1)0)
BeED
fi,—110) — ( Z Qi (ap)ap,—1 + (ci + (k — ke)(eq, fi))ak, 1 + ak, obi,—1)0)
BeED

5.6 Conformal and quasi-conformal structures

We study in this section the conformal properties of the vertex algebras My and 75~ “. Let’s start
by noticing that these vertex algebras may be decomposed as tensor product of simpler algebras.

We start by studying the simplest case, the one of sl,. Denote by M := My, since there is only
one root we drop the subscript « and use the fields a(z), a*(z) as generating fields for M.

Remark 5.6.1. There is an isomorphism

Mg ~ ® M

xed+

where M, is the copy of M induced by the immersion
M — M, which maps the fields a*(z) — aj(z) a(z) — a«(z)
Proposition 5.6.1. The Z.. graded vertex algebra M is conformal with conformal vector
w =a_ra*,[0)
In addition this is the only possible conformal vector.

Proof. It is an easy computation to prove that a_ja*; is a conformal vector.
Any other possible choice for a conformal vector must be of the form

(Aa_1a*; + pa_z +va*,)|0)
But a simple evaluation of the OPEs
[a(z), Y(w,w)]  [a*(z), Y(w, w)]
shows that this coefficients must be exactly

A=1 p=20 v=20

Corollary 5.6.1. The vertex algebra M is conformal with conformal vector

( D Qo a?;,])|0>

xed
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Analogous statements holds for 75 “c. We introduce the notation 75~ < (h) to precise the

abelian Lie algebra on which is defined the form k — k. on the definition of 7y as a vacuum Verma
module. Consider an orthogonal basis h; for which

(k — ke)(hiy hy) = Ay
and consider the subalgebras 7'[3" (hi) generated by the field b; (z) under the commutation relations
[bi,n> bi,m] = nxién,fm-

Remark 5.6.2. There is a natural isomorphism of vertex algebras

1
s < (h) = Q)" (hs)
i=1

And as conformal structures are concerned we have the following.
Proposition 5.6.2. The vertex algebra 7i§(b) generated by the field b(z) with commutation relations

[bn,bm] = Nn2kdn,_m is conformal if and only if k # 0. In addition it has a C-family of conformal
vectors

1 A
KA . _
wor (4kb,1b,1 4kb,2)\0> AeC

These are all possible conformal vectors.

Proof. Note that since 7§ is abelian, it cannot be conformal. The rest of the proof is just a simple
computation, using the OPE formula. O

5.6.1 Quasi-conformal structure on 71,

k’

Consider the vertex algebra 7§ for k # 0 and its conformal vector w** and write

Y(w,z) = E wkAz =T = E L,z "2 so L, = whl,
nez nez

we compute the commutation relations between L,, and by,

n
[bry Lin] = [br, W1l = Z <k) (bkwk’}\)nerJr]fk =nbpim —n(n— 1))\5n+m72,71
k>0

Proposition 5.6.3. The conformal action of w™* on 7§ (b) induces through a limit process a quasi confor-
mal structure on the abelian vertex algebra 1y (b) given by the above formulas.

Proof. We will use the definitions given in section 7.4.1 and emulate the proof of Proposition 3.4.3.
Consider the C[p] vertex algebra ﬂg (b), and notice that we may define C[B]-linear operators L,
acting on (b) P with the above formulas. The operators L,, withn > —1 preserve the Lie subalgebra

Cb[[t]l[3] ® C[B]1 and therefore they act also on 71%.
A simple calculation provides us with the equation

4BLn = ((b_1b_1 —Ab_2)[0))
and therefore they satisfy the commutation relations of the axioms of a quasi conformal vertex

algebras. Since ﬂg has no torsion elements the same equations must be satisfied by the C[f] oper-
ators L,, themselves, and therefore they satisfy such relations for the specializationat  =0. O

n+1
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5.6.2 Free field realization and conformal structures

The above considerations make us wonder if the free field realization
Vi(g) = Mg @7y < (h)

preserves to conformal structures for k # k. or the quasi conformal structures at the critical
level. Recall that the conformal vector on V. (g) is taken to be

K a
T ;LJaHI@

Proposition 5.6.4. Consider k # k. then the conformal vector S, € V(g) is sent through the free field
realization to the vector

( > aa,1a“1)|0 ( Zbl,qb 1P z)|0>

xed

in particular the free field realization is a morphism of conformal vertex algebras for k # Kc.

Since for at the critical value both structures are obtained through the same ‘limiting” process the free
field realization of V_(g) is of quasi conformal vertex algebras. The structure of quasi-conformal vertex
algebra on 1y is given by the following formulas

Ly - bim = —mbimin —1<n<-m
Ln-bi,—n=nn+1) n>0
Ly -bim=0 n>-m

Proof. For the proof see [Fre07][Proposition 6.2.2 and Section 6.2.4] O

5.7 Semi-infinite Parabolic induction 1

In this last section of the chapter we generalize some more the results we obtained so far. In
particular a slight modification of the proof of theorem 5.5.2 allows us to treat the case of a general
parabolic subalgebra p (as we will see, so far we only dealt with the case p = b_).

Consider a parabolic subalgebra p C g that contains the lower Borel subalgebra b_ (in particu-
lar h C p. Let
p=mor

be a Levi decomposition of p. So m is a Levi subalgebra containing f and ¢ is the unipotent
radical of p. In particular let @, the root system of p, induced by the adjoint action of h C p. We
naturally have @, C ®. We may take

m = @ ga B b v= @ Jo

oc{o,—a}C Dy xED,:—xg Dy,
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Let .
m=EPmiah
i=1

be the decomposition of m into a direct sum of simple Lie algebras m;,i > 1 and an abelian Lie
algebra my such that these summands are orthogonal to each other with respect to the killing form
of g. Given a set of invariant inner products k; on m; fori = 1,...s, consider the corresponding
Kac-Moody algebra fii; «, and consider the vacuum Verma module V. (m;) for eachi =1,...,s
and denote by V. (mg) the fiy , module 75° defined as above. Considering all these vertex
algebras together we define

Vi) (m) = X) Vi, (mi)
i=1

with the tensor vertex algebra structure.

Finally consider the Weyl algebra A9¥ defined as A® but with generators aj ,,, axn forn € Z
and o € @, \ ®,. And as before consider its Fock representation M , with its vertex algebra
structure.

Notice that in the case in which p = b_ we have m = h and ¢ = n,, in particular V|, (m) = 7§
and My, = My. So we are actually considering a more general case. We prove the following
analogue of theorem 5.5.2.

Theorem 5.7.1. Let g,p, m,t as above and let ki a set of invariant inner products on wy such that there
exists an invariant inner product x on g such that
Ki — Ki ¢ = Kjm;

)

where i ¢ for i =1,...,s is the critical value for the simple Lie algebras m;, while ko . = 0. There there
exists an homomorphism of vertex algebras

Wﬁ :VK+KC (g) — Mg,p (29 V(Ki)(m)

Proof. See [Fre07, Theorem 6.3.1] O
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Chapter 6

Wakimoto modules and applications
to the center

We are going to define in this section the so called Wakimoto modules. First we are going to study
a little more precisely the morphism

Ve (g) = Mg ®mo

we will focus in particular on showing that it is actually injective, so this really is a ‘realization” of
V. (g) in a free field algebra.

Next we are going to define what a module over a vertex algebra is and see the relationship
between V, (g) modules an §x modules.

Finally we will define the Wakimoto modules as V,_(g) modules obtained by the pullback of
certain My ® 1o modules and study some of their properties. We identify the Verma module M
with a certain Wakimoto module. This characterization allows us to describe better the space of
invariants {(g) = V.. (g)?*! and ultimately to prove that

gri(g) ~ Cljg*]e™)

6.1 Injectivity
We start by proving that the homomorphism defined in theorem 5.5.2
Vi(g) = My @ mg™ "

is injective for every invariant inner product k. We start by considering the finite dimensional case.

6.1.1 The finite dimensional case

Recall that in Proposition 5.5.1 we constructed an homomorphism of Lie algebras

g — Vect(N, x H)
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which actually has image contained in Vect(N.) @ C[N_] ® h where we embed h — Vect(H) with
the natural homomorphism induced by left multiplication.
We obtain a morphism of associative algebras

U(g) —» D(N;) ® Clh*] € D(N; x H)

where D(N, ) is the Weyl algebra of differential operators on N and C[h*] = Sym (h) is em-
bedded in D(N x H) as the algebra generated by the vector fields in h C Vect(H).

Consider now the natural filtration on D(N,.) defined by the order of the differential operator
D (N} )<i and the natural filtration on the symmetric algebra C[h*] = Sym(h), we define a filtration
on D(N,) ® C[h*] setting

n

(D(N4) @ Clh*))<n == P D(N{)<i @ Clh*<n—s
i=0

Since the Lie subalgebra Vect(N) & C[N,] ® § lies in degree < 1. The homomorphism U(g) —
D(N4) ® C[h*] preserves the filtrations. In addition we have equalities

grU(g) =Symg  grD(N,)=C[T"N,] grClh*] = C[h*]

and
grD(N,) ® C[h*] = (grD(N,)) @ (grC[h*])

Thus we obtain an homomorphism
Clg"] = CIT"N_] @ C[b"]
Proposition 6.1.1. Consider the isomorphisms
T*Ny =nl x Ny
and the identifications b = b*,n_ = n%, g = g* induced by the killing form. Then the morphism of schemes
p:b_xN; —g

induced by the homomorphism of algebras Clg*] — C[T*N.] ® C[bh*] and the above identifications, is
described by
(x,g) — gxg*1 = Adg(x)

in particular its image is open and dense in g and p is generically one to one and therefore the homomorphism
Clg™] — C[T"N4] @ C[h7]
is injective.

Proof. By construction the action of g is given by a vector bundle morphism which may be written
as follows

gx (NpxH) =5 T(Ng xH) (J%%) = (D Pe(x)ex+ ) Qf(x)bi,x)
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where, by the explicit formulas we gave in proposition 5.5.1, P&, Q¢ € C[N4]. The morphism
induced on the dual bundles is described as follows:

(03 x5 x (N4 xH) = g"x (NyxH) (e, x) = (D PE()J4%x)  (b5,%) = (Y_QF(x)(J)"x)

since P§, Qf do not depend on H we find that the morphism
(n% x ) x N. = g

obtained by composing the above morphism with the projection along the first factor is described
at the level of function exactly by the morphism Clg*] — C[T*N,] ® C[h*] we wanted to describe.
Now let 7t : g — ny @ b the linear projection induced by the decomposition g = ny & h @ n_, by
definition we have that the morphism g x (N4 x H) — (ny x h) x (N4 x H) is described by

(&%) = (m(x&x 1), x)

The dual morphism 7* : n¥ x h* — g*, after identifying n¥, =n_, h* = h and g* = g through the
Killing form is described exactly by the inclusion b_ — g. It follows that our morphism of interest
is described as desired

b xNy—g (&,%) — x&x !

6.1.2 The vertex algebra case
Consider now the homomorphism of vertex algebras
Vi(g) = Mg @ mg "

and consider the filtration on Vi (g) induced by the PBW filtration, the filtration on M induced by

the filtration on A9 where ;\in are the differential operators of order at most n (i.e. polynomials
where in each monomial appear at most n factors of the form a4 ) and finally the PBW filtration

on7y “ (i.e. the order of a monomial in the b; ).
K—Kc

It is quite clear by the formulas we presented that the homomorphism Vi (g) — My ® 75
preserves these filtrations, and that these are actually vertex algebra filtrations.
In addition is not difficult to prove following equalities

grVe(g) =ClJg"]  grMy=C[JT*N;]  grmg " =C[Jh"]
as (commutative) vertex algebras. We obtain an homomorphism of commutative algebras
Cllg"] — CJT*N,] @ C[Jb”]
the following lemma easily follows from the definitions.
Lemma 6.1.1. The morphism associated to C[Jg*] — C[JT*N,] ® C[Jb*] on the level of schemes

Jo* < JT"Ny — Jg*
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is the jet morphism Jp of the morphism described in the finite dimensional case
P:h" xT'Ny - ¢g*
In particular the map
ClJg*] = CJT*"N. ] ® C[Jh”]
is injective.
Proof. The first part of the proposition is evident from the definitions. We therefore restrict our-
selves to proving that if
p:X—=Y
is a morphism of schemes isomorphic to A™ whose image is open and dense in Y and which is
generically one to one then the morphism of rings

(Jp)* : CJY] — CIX]

is injective. It is quite clear that the finite dimensional morphism (J,p)* is injective, since the
image of J,p is still open and dense in ], Y and ], p is still generically one to one. Now any regular
function on JY comes from a function on J, Y (since Y ~ A™) and the commutative diagram

cny —IP X

|

CIlJYl —_— CX]
(Jr)

concludes the proof. O
This proposition has the following fundamental corollary.
Theorem 6.1.1. The homomorphism of vertex algebras
Vilg) = Mg @ mg "
is injective for every k.

Proof. Notice that by construction gr Vi (g) = ClJg*],grMy = C[JT*N,],grmy = C[Jh*] and the
induced morphism C[Jg*] — C[JT*N.] ® C[Jh*] is exactly (Jp)*. Then the theorem follows from
the following general fact.

If V and W are two filtered vector spaces and ¢ : V. — W is a linear map preserving the
filtrations such that the associated graded map

gro:grV—grW

is injective, then @ is injective.
To see this consider an a vector v € V \ {0} such that ¢@(v) = 0 and let n € Z, such that
v € Ven \ V<n—1. Then we have

gr @(Symbv) = Symb ¢(v) =0
But by hypothesis gr ¢ is injective so Symbv = 0 which implies v = 0.
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6.2 The center and 7

We prove the following
Proposition 6.2.1. The center ((g) is mapped through the free field realization embedding
Vi (g) = Mg @ o
into the subspace Tto. In particular the embedding above induces an embedding of abelian vertex algebras

((g) — o

Proof. Notice that any element in the center maps to a g[[t]] invariant element of My ® 719 thus we
only need to show that
(Mg ® m0)*") € mo

One may prove by induction that the lexicographically ordered monomials
R
H bib‘»lu H ef’bvmb H aj;cync ‘0>
la<0 myp <0 n.<0

form a basis of My ® mp. Write this decomposition as
My @70 = Wo,c, ©@ Mg,y

a proof completely analogous to the one of Proposition 5.1.2 proves that M, , is isomorphic, as an
n,[[t]]-module to U(n,[[t]])Y and therefore its space of n [[t]] invariants is one dimensional. Since
the action of n[[t]] commutes with the operators b; n, eg)m we find that a g[[t]] invariant vector

must belong to Wy . Finally a g[[t]] invariant element must also be h invariant, in particular its
weight must be 0 and hence no factors ef§ . can occur. This concludes the proof. O

6.3 Modules over a vertex algebra

Definition 6.3.1. A module over a vertex algebra V is a vector space M equipped with a linear
map
YM VoM — M((z)

or equivalently a linear map
YM(-,2): V= End (M)[[zF]]

with image contained in the subspace of fields. Such that YM(|0),z) = idm and for any elements
A,B € V, m € M the formal power series

YMA 2 YMB,w)m  YMB,wWYMA,z)m  YM(Y(A,z—w)B,w)m
are expressions of the same element in
Mllz,wlllz7 ', w™ ! (z—w) "]
in the three corresponding spaces

M((2)((w))  M(W))((z))  M{W))((z—w))
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We list a couple of remarks without giving any proof. The facts we list if not trivial are easily
proven emulating proofs of the structure theory for vertex algebras a more detailed discussion
may be found in [FBZ04][Chapter 5]. We see that a lot of the equalities typical of vertex algebras
are still valid in the context of modules.

* There is a natural notion of morphism of modules. By definition a morphism of V modules
@ : M1 — M; is a linear map which satisfies

QA" V) = AN - o(v)
¢ We have the equality
YM(TA,z) = 9, YM(A, 2)

this easily follows from the fact that TA = A_;|0) and from the equality (which follows from
the axioms taking B = |0))

YMAZ) = ) YM(A W 1]0), w)(z —w)"

n>0

e It immediately follows from the axioms that if we denote by AM the k-th coefficient of
YM(A,z)

AR B = X () (AnBit

n>0

* The usual vertex operator
Y:V - End (V)[[zt]]

defines a structure of V module on V itself.

* Given a W module M and an homomorphism ¢ : V. — W of vertex algebras, M gains a
natural structure of V module with the module structure defined by Y! = Y} o ¢;

* Modules has natural compatible structures with respect to tensor product. If M is a V module
and N is a W module then M ® N is naturally a V ® W module with

YMEN _ yM o N
with the obvious meaning.
¢ Given a V module M the linear map defined by
U(v) — End (M) Apy — AM

is a Lie algebra homomorphism.
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6.3.1 V modules and ﬂ(V) modules

We prove here that the notion of a module over a vertex algebra V is equivalent to the notion of a
module over the complete associative algebra U(V) introduced in Definition 4.2.3.

Theorem 6.3.1. Any module over a vertex algebra V is naturally a continuous module over the complete
algebra U(V). Vice versa, any continuous module over U(V) is naturally a V module. The category of
continuous U(V) modules and the category of V module are equivalent.

Proof. See [FBZ04][Theorem 5.1.6] O

In particular we see that for any Lie algebra g with an associative symmetric form k. The

category of Vi (g) modules and the category of U, (§) module coincide. In particular modules over
V«(g) and smooth §, modules coincide.
We restate this in the following two sections, providing some more explicit descriptions.

7o modules

We describe here the modules over the commutative vertex algebra 7y, we will see that the notion
of a module over a vertex algebra and module over the associated commutative algebra slightly
differ.

Proposition 6.3.1. To give a module over Ty is equivalent to give a smooth module over the abelian Lie
algebra §.

Proof. To give a mp module M consists simply in defining fields
bi(z) € End (M)[[*']]

such that all their Fourier coefficients commute. This is exactly like the construction of a smooth fy
module sending
bi,n — hi,n

the condition of smoothness and field coincide. O

For instance consider any character x : h — C, consider a one dimensional representation C,,
of the Lie subalgebra h[t]] & C1 of /G where 1 acts as the identity, th[[t]] acts like O while b acts as

the multiplication by x. Define
— [}
o= Ind g aeCx

It is a naturally a smooth § module and hence a 7ty module.

V. (g) modules and §, modules

We explore here the relationship between g modules and V, (g) modules.

Proposition 6.3.2. To give a module over V. (g) is equivalent to give a smooth module over the affine
Kac-Moody algebra §..
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Proof. Consider a V\(g) module M. Then the linear map
@k HF—nd(]\/l) ]Tci ’_)YM(151|0>)Z’)TL

is well defined (i.e. it extends from g[t,t~'] @ C1 to g((t)) ® C1) by the hypothesis that YM has
image contained in the subspace of fields. And a proof similar to lemma 5.5.2 shows that it is an
homomorphism of Lie algebras.

On the other hand given a smooth §« module M define a structure of V,(g) by setting

1|0 Z Jn
nez

where we interpret the J& as endomorphisms of M. And as always

1 1
(=17 (g = 1)!

YM(Jar . Jam0),z) == il CUU ) CEYPI

emulating a proof of theorem 4.2.1 one can prove that this actually defines a structure of V. (g)
module on M. O

6.4 Wakimoto modules and applications to the center

We are ready to define the Wakimoto modules.

Definition 6.4.1. Let M be a My module and N a 7y module. We call M ® N the Wakimoto
module associated to M and N. It is a §«, smooth module with the structure induced by the
tensor structure on M ® N and the homomorphism

VKc (g) — Mg & To

We will focus on the study of the module Wo+, s which we will soon define, since it is the most
important for our purposes.

Let A% | be the subalgebra of A? generated by the elements ay n, aj ,, withn > 0and m > 0.
Consider its trivial one dimensional module C|0)" where all the an,n, ay,, act like 0 while T acts
as the identity consider the induced representation

Mg :=Ind 2. Cl0)’

it has a basis of monomials of the form

* * !
A%y - Qo Qo ymy - - Qage,my [0) ny <0,my <0
it is naturally an A® module and a My module.

Next consider p : h — C to be the sum of the fundamental weights w; : h — C. Consider 7t_;,
as a tp module.
We define the §., module
W(;F,KC = Mé ® T_2p
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it has a basis of monomials of the following form
bi1 RREE bis,rs a’;” ng ot af;k,nk ag,,mp -+ apgy,m ni, i < O, m; § 0
obtained from the structure of My ® 79 module and precomposing with the involution of g,

defined by e; n — fin,hin — —hin, in particular the action of §._ is described by the following
formulas

ei(z) — Z : Qiﬁ(a*(z))aﬁ(z) i +ci0zay, (2) + ay, (z)bi(z)

BED 4

hi(z) = ) B(hi):a(z)ap(z): —bilz)
BED

fi(z) = au, (2) + Z :Phla*(z))agp(z)

B>oci

Given a character A : h — C consider the Verma module

M, = Ind 3% o Cx

where i = n; @tg[[t]] and C, is the fiy $hadC1 module where i acts trivially, b acts according to A
and 1 acts like the identity. These Verma modules are the analogue of the classical Verma modules
for a finite dimensional simple Lie algebra g. If the affine case fi, plays the role of the upper
nilpotent subalgebra while hj plays the role of the maximal toral subalgebra. These representations
are well studied and essential in the representation theory of the affine algebra g .

We will need the following theorem which characterizes the weights of irreducible subquo-
tients of Verma modules. It can be found in [KK79, Theorem 2].

Theorem 6.4.1 (Kac-Kazhdan). A weight (u,n) appears as the highest weight of an irreducible subquo-
tient of the Verma module My, where A = (A, 0) if and only if n < 0 and either A = w or there exists a
sequence of weights o, ..., Wm such that ng = A and pi1 = wy = myPy for some positive roots 3; and
positive integers m; which satisfy

2(uws + p, Bi) = mi(Pi, Bi)

where (-, -) is the inner product on b* induced by the Killing form.
In other words the weight (1, n) appears as the highest weight of an irreducible subquotient of My, if
and only if n < 0 and there exists an element w in the Weyl group of g such that

R=wA+p)—p
Proposition 6.4.1. The Wakimoto module Wy is isomorphic to the Verma module M ..

Proof. The vector [0)’ ® | — 2p) satisfy , by direct computation
fir@h-(10)®[—20)) =0 1:10)'®|—2p) =0)' ®|—2p)
by the properties of induced module we obtain a §, -linear map

+
Mok, — W,
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Next notice that both modules are actually modules for the extended algebra g, x CLy where
Lo = —t9¢. In addition a basis for M «, is given by the PBW theorem:

hi, Ty his,rs €xy,my e e‘xkynkfﬁl gy e fo,m ng, i <0, m; < 0
since for any h € h we have h - aj ,, = a(h)aj , and h - agn = —a(h)ax,n while Lo - a*o,n =
—nay and Ly - aq n = —Nagn, we find that the characters of My ., and WO+ ‘e under the action

of h @ CLy are equal. To show that the above morphism is an isomorphism its énough to show that
it is surjective, or equivalently that WSL‘ «. is generated by [0)’ ® | — 2p) as a §.-module.

Suppose by contradiction that W is not generated by |0)’ ® | — 2p). Consider the Lie subal-
gebrafi_ :=n_ @t 'glt~']. We first claim that

O KL/n W(;r
has a non zero weight component of degree < 0. Indeed consider its §., submodule
W' = U@ )I0) @ [ —2p) C Wg

And consider an homogeneous vector w € Wy \ W’ of maximal weight. Then w ¢ i War
Suppose by contradiction that this is false, them all the homogeneous factors w; in an expressmn
of

w= Z X{Wj with x; € fi_

must be of a weight higher than the weight of w and therefore must belong to W’ then since W’
is a submodule the same must be true for w so we deduce that w € W'. This contradiction proves
thatw ¢ i_W; _ . In particular, since w was taken to be homogeneous, there is a non zero weight
component in Wy /Wy _ . Since W is the direct sum of its weight components which are
finite dimensional, the same must be true for its quotient Wy /fi-W;  in particular writing

Wa /B-We = B Wo /8- W)y
(v,m)

we find that there is a non zero weight (v, n) such that (Wo+, SRWG ) (y.n) 7 0 and considering

any non zero linear functional
+ o +
(Wo’Kc/n,WO‘KC)(%n) - C

we get a non zero linear fi_-invariant functional @ : Wy - — C of weight different from 0. Next
notice that there is a basis of W formed by the ordered monomials

higry Mg fagng - e foony Qo my ...a*&hml\oy ®|—2p) (6.1)

this follows from the explicit formulas above, noticing that the change of coordinates from the
classical one to this one is triangular. In particular the action of L_b_ = t o [t "] is free. A
fi_ invariant linear functional must be also L_b_-invariant and using the basis introduced above
we easily see that the space of coinvariants with respect to L_b_ is isomorphic to the subspace
spanned by the monomials

azﬂ ymgy e azq,m1|0>/ & | - 29)
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The induced functional ¢ : Wy, /L_b_Wy _ — Cis by hypothesis non zero and homogeneous.
Since it must be nonzero on some homogeneous vector we find that the weight of ¢ must be of the
form

—> (—Bjmy)  withB; > 0,m; <0
j

in addition since by construction the weight of ¢ is not 0 this sum is not empty.
Now ¢ induces a fi_-invariant functional on M, «, or in other words a lowest weight vector

Vv
(NS MO,KC

the weight of lowest weight vectors on My, are similarly described as in [KK79] above. So we
must have

0# ) Bi=wlp)—p

for some w in the Weyl group, and since for any w € W the element w(p) — p is a sum of negative
simple roots ) ; 3; cannot be of this form. This contradiction concludes the proof. O

This characterization has incredibly useful. Using nice basis as in 6.1 we can characterize the
space of b := b & tg[[t]] invariants of the Verma Module M .

Lemma 6.4.1. The space of b -invariants of W(;r, «. is equal to the space Tt_, C War, ‘e

Proof. Consider the operators ff ,, introduced in Proposition 5.4.4. we call them fR  instead

of e} ,, because we are considering an action of §., obtained by the free field realization pre-
composed with the involution.
Analogously to 6.1 we find that W has a basis of the form
bi, .o by R R Ay e [0) @ | —2p)

x1,m O,k B 1, My

We write for convenience

R
(i), i f o, ) @B imy

where, for instance, [n] stands for the ordered vector (ny,...,ny). Consider now a b, invariant
vector v and write it as

R *
V= > 1, 11 e, Vi, i, Lo )
({1),[r1), ([ad], [n])

with Vi) 1 (o), € SPan(afg) ). Such an expression is unique. Since v in b, invariant it is in
particular Lyn_ = tn_[[t]] invariant. Since the action of L;n_ commutes with the action of the
bin (by the formulas) and with the action of f§ | by construction we find (by uniqueness of the
above expression) that

=0

*
Lo Vi i, [, tn

We can prove analogously to Proposition 5.1.2 that as an L, n_ module W "

O, = Span(afﬁ]‘[m]) is
isomorphic to

U(Lyn_)Y
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and therefore its space of invariants is one dimensional and spanned by 1. This proves that a b
invariant vector must be of the form

R
V= Z IRSEINES
(AL, (Tecdy D)

But it must also be annihilated by the Lie subalgebra h C b, . Recall that by the remarks on the
right action we have
[ho, i n] = a(h)

v= > b

([5,0rD

we find that v must be of the form

that is to say v € m_,,. This proves
(WS:KC)EUr CTm_2p

Finally since E+ kills the vacuum vector and commutes with the action of b; , we find that also

7'(—2p C (W&Kc)bJr

6.5 Semi-infinite parabolic induction 2

With the language of modules we are now ready to use theorem 5.7.1 to construct what we will
call the semi-infinite parabolic induction functor.

Consider a parabolic subalgebra p C gand let p = t@mbe a Levi decomposition, m = @&;_;m;®
mp a decomposition of m where the m; are simple Lie algebras for i = 1,...,s, my is abelian and
all the factors are orthogonal with respect to the killing form on g. Let k; a set of inner products
on m;. We may consider the Lie algebra fii(,, ) and construct as usual its vacuum module V() (m).
In the same fashion of proposition 6.3.2 there is a correspondence between smooth fi(,,) modules
and V(. (m) modules.

We have the following corollary of theorem 5.7.1.

Corollary 6.5.1. For any smooth @ -module R, where the inner products k satisfy the conditions of
theorem 5.7.1, the tensor product
Mg,p ® R

is naturally a Vi« (g) module and hence a smooth . module.
In addition to every f (. -morphism f : Ry — Ry the induced morphism

def: Mg, ®R1 — Mg, @R
is an homomorphism of Vi« (g) modules and hence of Gy« -modules.

Thus we obtain a functor from the category of smooth (., ) modules to the category of smooth

Bx+ . modules. We call this functor the semi-infinite parabolic induction functor. And we will
call the smooth g« «, module My , ® R the generalized Wakimoto module corresponding to R.
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6.6 Invariants
The goal of this section is to prove that

gri(g) = Inv Jg*

we will extensively use the facts we studied for the Wakimoto module Wy _ .

yRe

In order to prove this statement we compare the §., module V. (g) to the Verma module
Mo .-

The vacuum vector [0) € Vi (g) is killed by the Lie subalgebra [;: =f, ®(h®1)and 1 acts
like the identity on it. Therefore we obtain a homomorphism of §,., modules

MO)KC — VKc (g)

induced by the embedding Co — C|0) — V,_(g) which is an homomorphism of b, modules by
the above remarks. This is of course surjective (apply the PBW theorem).

Remark 6.6.1. The following equality between spaces of invariants hold

Vi, (Q)E1 =V, (g)e) gr (Vi, (g))b+ = gr (V.. (g))g[[tl]

Indeed we only need to show that every b, invariant vector is also g invariant. This is true
because Vi, (g) and gr Vi, (g) are both direct sum of finite dimensional representations of g. For a
finite dimensional representation V of g we have

Ve = Vo

and this is enough to show the remark.

To proceed towards our goal of showing that gr ¢« (§) = Inv Jg* we consider the following
diagram

gr (M{:

0,K¢

|

gr (Mo )" —— gr (Vi (g

) —— g7 (Ve (@)21)

))9[[tﬂ

We will show that the left vertical arrow is an isomorphism while the lower horizontal arrow
is surjective. This easily implies that the right vertical arrow is surjective as well, since we already
knew it is an embedding we obtain the sought after equality

gr (Ck. (g)) = Inv Jg*

we start by describing the space gr (Mo, ) o
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Proposition 6.6.1. The graded space gr (Mo« ) is isomorphic, as a b, module to the space of functions on
the closed subscheme

Joi_1) CLag”

defined by the equations J§ = 0 for J* e ny @ b.
In addition the space of b invariant functions on this closed subscheme is equal to

C[Pi,mi]izl e limyi<di
Proof. By the PBW theorem

gr Mo, «, = Sym (g((t))/(tgllt] @ by)) = ClJg[_4)]

is addition it is clear that the subspace Jg*(—1) C L_;g* is preserved by the action of b, and the
isomorphism above is b, invariant.
Using the isomorphism
() :L_qgx — Jg*

we restrict ourselves to compute the space of invariants of the closed subscheme
Jaio) — Jg" Joloy ={J¢1 =0:]%en, @b}
Consider the B, the subgroup of ]G defined as
B.(R) = {g € G(RIIt]]) : g(0) € B(R)}

It is an affine closed subgroup of JG, its Lie algebra is then isomorphic to b @ tg[[t]] = E+. We
also consider its finite dimensional analogues

Bin CJnG  Bin(R)={ge GRIt]/t"): g(0) € B(R)}
These are all closed subgroups of ], G. Recall that in Lemma 4.5.1 we proved that the map

Iﬂp : In(g:eg) — JTLP

is a geometric quotient for every n > 0. Our first goal to deduce from this that the map
{J21 =0:J% € by} =TJn(87eg)(0) = JnPro) = {Pi,—1 =0}

is well defined and a geometric quotient for the action of E+,n- Applying [MFK94][Proposition
0.2] to prove that this is a geometric quotient it suffices to prove that the map is surjective on C
points and that the C fibers are single §+,n(C) orbits.

We will describe these maps using the isomorphism g* = g induced by the Killing form. Notice
that since greg4 is an open subset of g we have

glt]

Jn (greg)(R) = greg(R) + ttT ®R
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this follows from the fact that for an open subscheme U C X we have the equality U(R[t]/t") =
{x € X(R[t]/t™ : x(0) € U(R)}. Call n4 req := 14 N greg, we naturally have

glt]

F®R

]n(gjeg)(o) = n+,reg(R) ot

Now to see that the restriction

Jn(8reg)0) = JnPro)
By classical results about the space of invariants we have that the ideal generated by the g invariant
polynomials in g,.4 is the ideal of functions vanishing on the nilpotent cone. Thus every nilpotent
element lies is the set of zeroes of the invariant polynomials so for every x € Jn(g7.4)(0) we deduce
P;,—1(x) = Pi(x(0)) = 0 and the restriction is well defined.

To see surjectivity consider a point u € J,P(o) and a point x € Jg,,, over it. By assumption
Pi(x(0)) = 0 for every i so x(0) is nilpotent and regular and therefore there exists a g € G(C) such
that (g - x)(0) € ny or in other words g - x € Jn(greg)(0) and since J,p is G invariant g - x — u.

Finally to see that the fibers are single §+,n orbits consider two points x,y € Jn(greg)(0) such
that their image in ],,P is the same. Since the map ], (greq) — JnP has fibers consisting of single
JnG(C) orbits we know that there exists an element g € J,, G(C) such that g - x = y. In particular
both x(0) and (g - x)(0) = g(0) - x(0) lie in n,. 4. Since there is only one Borel subalgebra by such
that x(0) € by and g(0) - x(0) € bgyx we must have b, = b, and by, = b, = g(0)b so g(0) must
normalize b and therefore it must lie in B.,.. This proves that g € §+,n.

We are now able to deduce that since Jnp : Jn(g7eq)0) — JnP(0) is a geometric quotient we
have the following equality

Clln(8feq)(0]°F9M/ Y = ClJnP(o)]

From this we deduce that the natural map

ClPynlne—1 — Clgio)]"

is an isomorphism.
To see injectivity is enough to notice that for every n > 0 the composition

ClPinlne—1 — CUQTO)]E’ — C[In(ﬂieg)(oﬂb@tgm/tn = C[JnP(0)]

Is exactly the quotient of C[P; ] by the ideal generated by (Pi m)m<—n—1. To see surjectivity it

suffice to show that every b, invariant function on J(g7.4)(0) come from a b & tg[t]/t"™ invariant
function on Jn (g7eg) (0)- This can be done emulating the end of the proof of Theorem 4.5.2. O

As an immediate corollary we obtain that the map

gr (Mo,.)"" = gr (Ve, (g))gw

is surjective.

In addition we can easily compute the character of under the L, action of both gr (ng%) =

gr (m_2,) and gr (Mo . ) ®+ and see that they are actually equal, so the immersion

gr (Mg}ib) —gr (MOvKC)b+

is actually an isomorphism. Combining these statements we obtain

121



Proposition 6.6.2. The following equality between graded spaces holds

gri(g) = Inv Jg*

in particular the character of gr C(g) and hence also the character of ((g) under the action of Ly is given by
the following formula

1
chd(g) = H H 1 1q“i

i=1ni>di+1

122



Chapter 7

Screening Operators

7.1 Overview
The goal of this chapter is the construction of certain operators
§1’. : WO,Kc — W(()E())»Kc

where Wy ., = My ® mp and VNV(()?()),KC are certain §., modules that we are going to define.
These are called the screening operators (or screening operators of the second kind, following
[Fre07, Chapter 7.3]): they intertwine with the action of g, and annihilate the vacuum vector in
Mgy ® o = Wo k.-

It follows that the vertex subalgebra V,_(g) is contained in the intersection of the kernels of
these operators. In particular since the center ((g) is contained in the abelian subalgebra m it is
also contained the intersection of the kernels of the operators

Villl == (Si)
We are going to write down explicit formulas for the screening operators and therefore for the

operators V;[1] as well.

In the next chapter we will give a geometric interpretation of the operators V;[1], this will
finally allow us to identify the center ((§) with the algebra of functions on the space of "G Opers
on the formal disc D.

7.2 Intertwining Operators

We start by giving the definition of a particular kind of intertwining operators in the context of a
conformal vertex algebra V and a V-module M.

Remark 7.2.1. Consider a conformal vertex algebra V of central charge ¢ with conformal vector
w. Then any V-module M carries an action of the Virasoro algebra of central charge c through the
operators
L,=wM where YM(w,z)= Z wMz =2
nez
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Wecall T:= wM™ € End (M)

Proof. The commutation relations of the wM are easily described by the axioms of a module.

O

Definition 7.2.1. Let V be a conformal vertex algebra and let T € End (M) defined as above. We

define a linear map

Yym : M = Hom(V,M)[lz"]  Yym(A,2z)B :=e*T Y (B, —2)A

this is an example of an intertwining operator.

The fundamental properties of Yy,pm are described in the following proposition.

Proposition 7.2.1. Let V be a confomal vertex algebra, M a V-module and Yv,m as above. Then given any

A,B € Vand any B € M there exists an element
feMllz,wlllz" ", w™', (z—w)™]
such that

Ym (A, z)Yym(B,w)C  Yym(B,w)Y(A,z)C
Yv,m(Yv,m(B,w —z)A, z)C Yv,m(Ym(A,z —w)B,w)C

are expansions of f in

respectively.

Proof. See [FHL93, Proposition 5.1.2]

Corollary 7.2.1. Let V, M, Yy, m as above. The following hold:

1
Y (A, 2) Yy (B, w) = Yym (B, w)Y (A, 2) = 3 Vv (AY'B,w)ays(z —w)

k>0

In particular

AV oBYM BYMoA, = @ (AMB)YM
k>0

Proof. Analogous to the proof of corollary 3.2.2.

We will write the above formula, abusing notation as

[ATL) Bm] = Z (2) (AkB)n+m—k

k>0
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7.2.1 Example: intertwining operators for ng

To be more concise we write § := k + 2 € C in what follows we are interested in the cases for
which k # k¢, so in terms of 3 we are assuming that 3 # 0. As a useful example we describe an
intertwining operator in the case of the conformal vertex algebra ng for B # 0 and its module 75 5

Recall that 7} is the vacuum module associated to the one dimensional abelian Lie algebra
spanned by an element b with the symmetric form given by k(b,b) = 23. So the elements b,
satisfy the relations

[(br,bm] =n2Bdn, —m

Its conformal vector is w = ﬁbq b_1]0) — ;—Bb_z and the translation operator is therefore given

1
by T = 7 Tezbabon1.
We want to compute the intertwining operator

V2[3 (Z) S Hom(ﬂg»ﬂgg)[[lﬂ]] VZB (Z) = Yrcg ,7':5’[3 (|26>’ Z)

Note that by formula 7.1 we have

it
o, Vap(elnl = 3 (1) 020755 = 28Vaptelni

or more compactly
[bn) VZ[S (Z)} - ZBZnVZB (Z)

Since the action of the operators b,, : n < 0 generates 71([)5 the commutation relations above together
with the datum V4 (2)|0) uniquely determines Vg (z).

Proposition 7.2.2. The operator V,g(z) is described by the following formula.

VZB(Z) = Tzﬁexp( Z —t:lzn) ex‘p( Z —k;lz,n>

n<o0 n>0

where T ﬂg — 715[5 is the operator commuting with all by, : . < O that sends |0) — [23).

Proof. Call e(z) the formula of the right hand side. By the remarks above, to show that e(z) =
V33 (2) it suffices to show that

e(z)I0) = V25(2)I0) and [bn,e(z)] = 2Pz"e(z)

To show the first equality recall that by definition V>4 (z)|0) = e*"|2B). And notice that

e(z)0) = Togexp < — Z I:Zn) |0)

n<o0

Since it is clear that e(z)|0) = |23) + z(...) we can restrict ourselves to prove that

Te(2)[0) = d.€(2)l0) = Top( ) bnz ™ ')exp ( p TZ“) X

n<0 n<0
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In order to do this notice that by definition we have [by, Tg] = 2T, and [bm, T2g] = 0 for
every m # 0 and therefore [T, T3] = T,gb_; in addition notice that

|:T, . Z bn —n:| Z b1z -n _ Z bnz—n—l
n<o n<o n<-—1
It easily follows that

Te(z)[0) = [T, Toplexp ( - Z bf _“) 10) + Top [T exp( Z bT:z_“)] 0)

n<0 n<0

T2[5<b rexp(o..)+ () bz ™ expl.. ))o> =0, (e(2)0))

n<—1
We are left to compute the commutation relations [br, e(z)]. We find that

* (n = 0) The operator by commutes with the ‘exponential parts” while [bg, Tog] = 2T, so
we have

[bo, e(2)] = 2Pe(z)
* (n < 0) The operator b, : n < 0 commutes with T,z and with the first exponential while

[bn,— > l;“;z—m] = 2pz"

n>0

and we finally find

[bn, e(z)] = 2Bz"e(z)
® (n > 0) The same reasoning of the previous point applies to the case n > 0 and we get

[bn,e(z)] = 2Bz e(z)

This concludes the proof. O

7.3 The sl, case

We start by working out the sl; case. This is a crucial for us since the operators S; are actually
obtained with the semi-infinite parabolic induction functor from the s(, case.
First we need to define a new vertex algebra.

7.3.1 Friedan-Martinec-Shenker bosonization

Consider the Lie algebra with generators pn, qm with n,m € Z and a central element 1 with the
following commutation relations

[prwpm] = n‘sn,fml [qna qm] = _nén,fml [pn> qm] =0
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For A,u € C let Ty, be the induced representation from the Lie subalgebra spanned by
Pm, qn, 1 with n,m > 0 of the one dimensional module generated by a vector |A, i) where

pnl)\) H> = )\6n,0|)\) M> qmp\a H> = H5m,0|7\, FL> 1‘A) H> = ‘A) H>
For A, u, A/, u’ such that AN — pup’ € Z consider the vertex operators

V)\,H(Z) € Hom(ﬂ?\’,p’» n)\’—o—}\,u’—b—u) [[Z:H”

defined by the formulas

Vaulz) = TA)HZML””/eXp( _ Z szn)exp( _ Z MZ*H)
n<o0 n n>0 n

Using a little bit of an abuse of notation we will write e’V for the operator V. (z). Here u

should be understood as the antiderivative of p(z) while v should be understood as the antideriva-
tive of q(z). For any y € C let

Ty = @ Moty nty
nez

we define the structure of a vertex algebra on TTy with the vertex operators V, .(z). We define
Y(‘na T1>),Z) = vn,n(z) Tl — Tl

and check that the fields Y(In,n)), b(z) are mutually local and satisfy all the axioms of the recon-
struction theorem. Every T1, becomes naturally a ITp module.
Let M := Mgy, then we have an embedding.

Theorem 7.3.1. There is a (unique) embedding of vertex algebras M — Tl such that the fields a(z) and
a*(z) are mapped to the fields

i(z) =e*t i*(z) =
We consider the following modules:
Definition 7.3.1. Lety,A € C we define
WV,)\,k =1, ® nf

this is naturally a TTp ® 71(')5 = VNVo,o,k-module, hencea M ® ﬂg -module and hence a s1, x-module

7.3.2 Intertwining operators
Definition 7.3.2. Define the intertwining operator
Si(z) = YWoorWoo.20x (| — B) ©[2),2) = Glz) PV (2)

We justify this notation with the following remark.
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Remark 7.3.1. It is possible to prove, analogously to Proposition 7.2.2 that the intertwining oper-
ator associated to | — 3, —f) € TT_g is exactly

V_g,—plz) = Tﬁyﬁexp< Z 7[3]9“ —T: Bqnz“) exp< Z 7&)“ : Bqnz“)
n<o0 n>0
Finally, we follow the notation a(z) = e**¥ and denote y a(z) P :=e P¥ Bv =V_5 _;(z)
We denote by v_g 23 = | — ) ® |2) for simplicity.
Lemma 7.3.1. The following OPEs hold

Y(BTv_p_12p8,W)  Y(Bv_p_1.28,W)
1= T w2

[£(2), Sk(w

Proof. By corollary 7.2.1 we know that for any X € sl

X(2), Sicw)l = Y~ Y(Xnv_p,25,W)

_ n+1
= (z—w)

Therefore to compute the desired OPE we need to compute the polar parts (in z) of X(z)v_g >4 for
X € g. Recall that the morphism Vi (sl;) = M ® ng maps

e(z) — a(z)
h(z) — —2:a*(z)a(z) : +b(z)

=
f(z) — —: a*(z)?a(z) : +kd,a*(z) + a*(z)b(z)
The corresponding fields on Ty ® 7'[(‘)3 are given therefore by

e(z) = a(z)
h(z) = —2:a*(z)a(z) : +b(z)
f(z) — —: a*(z)?a(z) : +(B —2)3,a*(z) + a*(z)b(z)

where, as before
a(z) =e*™ a*(z) =—:p(z)e ™V

We proceed with our calculations by steps, paying specific attention on the polar parts of the
series we are calculating. As the notation is concerned we write
U((z) > a(z Z aizt +0(z")

i=—N

ifa(z) — > =\ aizt € 2P TU[z]] for any vector space UL
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1. Notice that v_g »3 is killed by all pn, gn, by : 1 > 0 while we have

PovV-p,2p = qovV-p,2p = —BV-p,28
bov_p,2p = 2pv_p 2

2. We start by computing e™ "™ v_g >p:

e ™Y g ag =V pin2p +Z(MPpo1 +1q1)v_pin,2p + O(2%)
Indeed
Y m m )
m<0 m>0
+ _
= nynexp(— Z npimmqmz m)vfﬁ‘ZB
m<0

=V_pin2p +z(Mp_1 +Nq-1)V_pin,2p + O(z?)
Where we used the fact that v_p »p is killed by all pn, g withn > 0.
3. From point 2 we immediately deduce that
e(z)_v_p2p =0
so the first OPE is proved;

4. We consider now a*(z), we claim that:

a*(z)v_p,2p = E\Lfsq,zg + (= Bp-1+9g-1) —p-1)v_p-1,2p + O(2)
Indeed
a'(z)vop2p = (—Pplz)ee ™V —e " Vpz)_)v_pp =
—p_1v_p_1,28 +O(z) — e_u_"pjov,ﬁyzﬁ =

WYy o

—P-_1vV_p-1,28 +0(z)—e .

and we conclude using the expression of e “Vv_g > written in point 2;
5. We are now ready to compute the OPE relative to h(z) and we claim that once again
h(Z),V,B’zﬁ =0

h(z)v_p,2p = —2(a*(z)+a(z) + a(z)a*(z)-)v_p,2p + b(z)v_p,2p

We compute these two terms separately
(@)
—2(6*(z)+'d(z) + E(Z)ﬁ* (Z),)V,ﬁyzﬁ = _26(2’)6*(2’)*\2*6»23 +0(1)

= —2%\)_(3,2[3 + 0(1)
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(b) 2
b(z)v_p 25 = — V-B.28 +0(1)
Their sum is clearly regular;
6. To compute f(z)v_p 3 we need to compute three separate terms
(@) (: a*(z)?d(z) : v_p,2p) Note first that
@ (2)%d(z) == a*(z)2dlz) + 2a* (z) L a(z)a*(z) - + a(z)a*(z)>

So using the properties we already proved so far we have

1@ (2)%() v, = O(1) — 28" (2 A2 v gy ap e PO
= bt b - PRI, L PRED, s 00
(b) Knowing a*(z)_v_p.2 we easily find that
(B~ 2.3 (v pop = — PP

(c) Finally

~ 2p2 1
a*(z)b(z)v_p2p = ZLZ\Lfsf,zB + ;(—ZB(PA +B(p—1+4q-1))+Bb_1)v_p_12p

Summing all these contributes together we find

—B+1(p-1+9g_1)+b_
TSNl )[R 2) RaL 2 N

By analogous calculations we find that the coefficient of z~! is exactly BTv_p_1.2p therefore
we proved the desired formula for the OPE [f(z), Sk (w)].

O

Corollary 7.3.1. The residue

Sy = JSk(w)dw
intertwines with the action of 5/[\2k on both modules.
Proof. By the properties of YWo.0..Wos.26.x we have
Y(BTv_pg_1,2p,W) =0, Y(BV_p_1,28,W)
So the OPE relative to f(z) may be written as
[F(2), Sic(w)] = 0y, (Y(BV(;B_‘ Lff’w))
hence its residue is 0 U
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7.4 Intertwining operators at the critical level

Our goal is to define an operator analogous to Sy when k = k.. We will construct it as the ‘limit’
of the operators Sy for k — k.. To construct this limit we will slightly modify the definition
of all vertex algebras involved in order to make them C[f]-vertex algebras, where {3 is now an
indeterminate, such that their specialization to 3 = k brings back the usual vertex algebras of level
k.

To construct the limit of the intertwining operators we will need the following lemma.
Lemma 7.4.1. Let M, N be (not necessarily finite dimensional) free C[x]-modules. And let ¢ : M. — N be
an homomorphism of Clx]-modules.

Then if the specialization @ : M/(x —A) — N/(x — A) is O for infinitely many A € C then @ is
identically 0.

Proof. Let (mi)ier, (nj)jej be basis for M and N respectively. In addition consider polynomials
P!(x) € C[x] such that
o(m) = Y Plm
jeJ

note that for a fixed index i only a finite number of PJ as j varies in not 0.
Now after we take the specialization at x = A the elements m; form a C basis for M/(x — A),
and the elements n; form a C basis for N/(x — A). The homomorphism ¢ is easily described as

ealmi) =) Pl(A)n
j€]
Therefor we find that by the hypothesis of ¢ being 0 for infinitely many A for every couple (i, )
the polynomial P!(x) has infinitely many zeros (namely the complex numbers A € C for which
@ = 0) and is therefore 0. O
7.4.1 C[B] vertex algebras

We define here C[p]-vertex algebra analogues of the vertex algebras Vi (g) and 75. From now on
B has to be intended as a variable and not as the complex number k + 2 as in the previous section.

Let g a Lie algebra equipped with an associative symmetric form « consider the C[3]-Lie alge-
bra Lg[p] = Lg ® C[B]. Consider its one dimensional extension

9s« = Lg[B]l ® C[B]1

with the bracket defined C[f3] linearly by the formula

X&f(t)@p(B),Y®g(t)® q(B)] :—NB)q(B)([X,Y] @ f(t)g(t) — BK(X,Y)Jf(t)g'(t)dt>

Since the bracket is C[f]-linear we may consider the specialization of §g at 3 = k. The result is
clearly the affine algebra §i. When g is simple an k = k4 we call this Lie algebra simply §p.
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We move on defining the associated vertex algebra. Consider the C[{3]-subalgebra g[[t]][3] &
C[B]1 C p«. and its trivial module C[B]|0), where as always 1 acts as the identity. Define

P ﬁ K
Ve(g) == Ind i) 8100161 CIBIIO)

by the PBW theorem it has a C[f3] basis of lexicographically ordered monomials of the form
a Am |0>

ny I

defining the vertex operators C[f]-linearly as in the case of V. (g) defines a structure of C[f]
vertex algebra on Vg« (g). We denote

Vi (sl2) and 7tg’

the vertex algebras built with the above construction from sl, with the normalized killing form
1/4ks;, and of the one dimensional abelian Lie algebra spanned by b with the form k(b,b) = 2.

Proposition 7.4.1. There exists an homomorphism of C[p]-vertex algebras
Vi(sh) = M® ﬂg
such that
e_1/0) — a_1/0)

h,1|0> — (—Zagaq +b,1)‘0>
f_110) = (— (a§)?a_1 + (B —2)a*; + aib_7)|0)

Proof. Note first that Lemma 5.5.2 applies in the C[f]-case as well. Thus we only need to show
that the Fourier coefficients of the operators associated to e(z), h(z), f(z) satisfy the commutation
relations of sl; 5. Since they do satisfy this commutation relations on the specialization at = k+2

for any k € C by lemma 7.4.1 they must satisfy them also in End ¢z (M @ 753 ). O

7.4.2 C[p] version of Sy

Consider the free C[] modules
M ®¢ 717([)5 My ®c ﬂg

they have a natural structure of C[3] vertex algebras induced by the structure of C-vertex al-
gebra on M and Iy and from the structure of C[f]-vertex algebra on ﬂg . Their specialization to
=k + 2 are the vertex algebras Wy x and W o x respectively. In addition we have embeddings

Vg (sl2) = M ®c Ttg — TTo ®c¢ 71([)3
Next consider the free C[B]-module TT_g 4, —p+n With a basis of monomial of the form
Png -« -Pnefmy ---qm ) — B +1,—Bf + 1) ny, my <0
The direct sum

Mg = @®nezllpin,—p+n
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has the structure of a Ty ®¢ C[B]-module with the same formulas of the non quantum case.
Analogously we may define the 75 -module 75 8
Consider the vertex operator

V*B,ZB(Z) = afB(Z)VZB(Z) Ty ®c 71([)3 — I—LB ®(c[[3] HEB

where
~—p3 _ _ Bpn + Bqﬂ -n o f’pn + Bqn -n
a P(z) = Tﬁ,ﬁexp( Z — 0 Z exp Z 0 Z
n<0 n>0
b bn .
Vzp,(z)_TZBexp<—an )exp(—znz )
n<0 n>0

We have the following proposition
Proposition 7.4.2. The operator
gfg = JV—B>ZB (w)dw
intertwines with the action of 5?2[3 on both modules.

Proof. By corollary 7.3.1 the specialization of Sg at f = k + 2 for k # —2 intertwines with the
associated action of sl since it turns out to be exactly the operator Sx. By lemma 7.4.1 then we
see that the same is true for Sg. O

Consider now the C vector subspaces
(Mo @ 7§ Jres CTo@mE  (M_p @ 7hg)res C T ® 70}
defined to be the C-span of the monomials
Piy ---Pi.dj; - --Pj, Pry -+ b M) ®[0) Piy - -Picdjy - - Pj, Diy - - bi = B+M, —B+m) ®(2B)

respectively. Identify them both with the C-vector space Ty ® mp. Note in addition that the
tensor product by C[] on both spaces induce isomorphisms

(Mo @ 7§ )res @®CIBl =To @1~ (TT_p @ 7o )res ® CIB] =TT_p @ 7k

Under these identifications we may expand an element v € TTy ®7ré3 (orinTl_g® nf p) In powers
of B
v =vg + Bvq +BZV2+...

with v; € TTo®mo. Note that this sum is finite. Analogously given a C[f3] linear homomorphism
fillo ® n{i =Tl g ® 7'(5’ s We may express it in powers of 3

f="fo+pBf1 + B2 +...

with f; € End (TTp ® mp). Note that this sum is not necessarily finite but it becomes finite once we
apply to it any vector v € Ty ® 7o.
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Lemma 7.4.2. Givenany A € (TTy ® n{i)m and any X € Lg C gp then
X-gA=X, A+B(..)

where X -g A denotes the action of X as an element of §g while X - A denotes the action of X as an element
of Gk, on A € Ty ® T through the identification (TT_g ® nﬁﬁ)m =TTy ® mo.

Proof. This follows from the fact that the specialization of TT_g ® 7'(23 p at p = 01is equal to TTo ® 7o

as a ITy ® 1o module. And from the remark that TTo @ 19 = (TTp ® ng)res —Tlh ® ng/(ﬁ) is an
isomorphism of vertex algebras. O

Consider now the expansion of S in powers of B.

Sp =) SpB™

n>0

Proposition 7.4.3. The first non zero factor of Sg in the above expansion, considered as an element in
End (Mo ® 7o) intertwines with the action of sl .. We call it S, the screening operator at the critical
level.

Proof. Write
Se =B (5 +B(...)

and let A € Tlp ® 7y any vector. Consider any element X € Lg as in lemma 7.4.2. We have by
proposition 7.4.2
X-g Sp(A) =Sp(X g A)

expanding both expressions in powers of (3, using lemma 7.4.2. the fact that both homomorphisms
are C[f] linear and finally comparing the lowest degree terms we obtain

X k. S(A) =S(X -k, A)

7.4.3 Computation of S

We will expand separately the operators
aP(z) and Vap(2)

in terms of the identifications ITg =TTy ® C[B] and ng =19 ® C[B] as C[B]-modules.
Remark that on TTxC[] the operators pn, n acts only on the first factor. On the other hand
considering my ® C[B] = ﬂg , it is quite clear that the operators b, acts as follow:

0

ba=bnifn<0  by=2nps
-n

ifn>0
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We start with Vo5 (z). Write Vag(z) = 3 V,5[n]z7™. Define in addition

nez
Z Vinlz ™ = exp ( — Z bnz“)
n
n<0 n<0
By the remark above we obtain the following expansion

exp(— Z l::z_“) = exp(— ZZBaba_nz_“> =1 +—ZB<Z

n>0 n>0 n>0

—-n 2
ab_nz >+[3 (...

So we have

Vap(z) = Z Vinlz ™ -2 < Z V[n}z“) ( aba zm>
n<o -m

m>0

and we find that if we write Vop(z) = Y, ., Vapnlz™™

nez
Vopgl =Vl +B(...) ifn<0
Vol =BVl +p%(...)ifn <0

where forn < 0 3

0bm—n

Vin]:=-2 > Vim]

m<0

On the other hand we have

aP(z) = (1 8y p“jlq“znﬂsz(...)) (1 > p“jlq“znﬂsz(...))

n<o0 n>0

from which, denoting a=P(z) =Y, a Fnjz ™™

B =1+p(..)ifn=0
G Bl = B<M> B2
n

It immediately follows the following formula for the residue S,(z)

Sp = B(V[H +) %V[—nJr Hlpn + qn)) +B2(-)

n>0

we proved the following proposition

Proposition 7.4.4. Let V[n] be the operators above, then

S=VOl+ Y “Vin+ 1pa+an)

n>0
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In particular it maps mo — o and on this space it holds the following formula

0

V=S, =V[l]=-2) V] T

n<0

Notice that S kills the vacuum vector |0) € Ty ® 7.

7.5 Screening operators for arbitrary g

We want to extend the previous result to an arbitrary simple Lie algebra g. In order to do so we
will use the functor of semi infinite parabolic induction introduced in Theorem 6.5.1. In order to
do so we consider the parabolic subalgebras

pVcg  pVi=b_@Ce
in the decomposition p(t) = m @ t we may take
m= 5[?] @ (hy)*
by theorem 5.7.1 there is an homomorphism of vertex algebras
Vi (8) = Mgy ® Vi, (sl2) ® mo((hi) ™)
The following proposition follows directly from the constructions

Proposition 7.5.1. Consider the isomorphisms M ,1y @ M =~ Mg and 7o(Ch;) @ o ((hi)+) ~ 7o ()
then the composition

Vi (8) = My p00 ® Vi (812) @ o ((hi) ™) = My pi00 @ M@ 70(hi) @ mo((hi) ) ~ Mg ® 710(h)
is exactly the free field realization of V_(g) of Theorem 5.5.1.

To apply the semi-infinite induction functor to this case we need to extend the definition of S

in order to make it an intertwining operator of a sl2,_ @ (h;)+ action.
It suffices to consider the operator

S®id: M ®@mo(hi) @ mo((hi)®) — TTo ® mo(hi) ® 7o ((hi) )

It intertwines with the action of si» . @ (hy)t

Definition 7.5.1. For an arbitrary g we define the screening operators Si as the operators obtained
through the functor of semi-infinite parabolic for the subalgebra p!*) C g. It is clear from the
construction that S; (7o (h)) C 7o(h) we call

Vii= (S0 (h)
Proposition 7.5.2. The image of the embedding
Vi (g) = Mg @ mo(b)

is contained in the intersection
ﬂ ker S;
i=1,...,1
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Proof. The operators S; commute with the action of §, and kill the vacuum vector. O
Consider now the isomorphism

1 1
o(h) — 7o (hi) ® To((hi)h) bi, — bin bjn = Eajibi,n + (bjn — Eajibi,n)

Proposition 7.5.3. The operator Vi : o — o is characterized by the following formula:

Vi=—) VimDy,,, ,

m>0
where Dy, ., is a derivation of 7o such that
Dy, .. - bj,m = @idn,m
Proof. Recall that the operator V; is V ® id and that
V=-2 éo Vim] P
Using the isomorphism above between 75 () ~ 7o (hi) ® 7o ((hi)+) we find

0 0 1 1 0

1
o by m = e - (bj,m — 5a5ibi,m) + 7 9 bi,m =0+ 5jidn,m

2 Obin  © 2

where we used the fact that for x € 7o((hi)*) the derivative with respect to b; is by definition
0. O

Proposition 7.5.4. The center of the vertex algebra ((g) is contained in the intersection

C(g) C m kerVI
i=1,...,1

Proof. We know that ((g) C 7o and that V,_(g) C NkerS;. It immediately follows that

((g) C ﬂ ker(Si)jn, = ﬂ ker V;
i=1

i=1,...,1 yeessl
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Chapter 8

Identification with the algebra of
functions on the space of Opers

This section is devoted to the identification of the center of the vertex algebra ((g) C Vi, (g) with
the algebra of functions on the space of Opers which is a classifying space for certain connections
on the trivial G-bundle on D.

We will start by studying principal bundles and connections on them, we proceed by defining
the space of Opers and Miura Opers and finally link the algebras of functions on these spaces to
the center ((g).

8.1 Principal Bundles

We first have to define what a principal bundle is and what is a connection on it. Some of the
definitions we will be giving are geometric but sometimes the Tannakian formalism, and therefore
a more functorial point of view, will come in handy.

From now on X will denote a scheme over a C algebra R, G an algebraic group over C, Gg
will denote its extension of scalars to R. All fibered products are to be understood over the most
natural space.

Definition 8.1.1. A principal G-bundle over X is a scheme P with a right actionof G: p: P x G = P
and a projection p : P — X which is G invariant. We also require this bundle to be locally trivial:
There exist a covering U; of X for the Zariski topology for which Py, >~ U; x G in a G equiv-
ariant way.
A principal bundle P that is isomorphic to X x G (always in a G equivariant way) will be called
trivial.

To shorten our notation we will call a principal G bundle simply a G bundle. It is easy to check
that given a map of schemes f : Y — X the fibered product f*P =Y xx P is naturally a G bundle.

Remark 8.1.1. We state some simple remarks:

® The natural map P x G — P xx P which sends (p, g) — (p, pg) is an isomorphism. This may
be checked locally on X, and it is quite easy to see for the trivial bundle;
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* A map of G bundles is a G-equivariant morphism ¢ : Py — P, such that p, o ¢ = py. Such
a map must be an isomorphism since the fibers are single G-orbits. A map satisfying these
properties will be simply called an isomorphism;

¢ A principal bundle P over X is trivial if and only if the structural morphism P — X admits a
section. The set of such sections will be denoted by Px(X), it may be checked that itis a G(X)
torsor (i.e. it has a natural G(X) action which is simply transitive);

® The set of automorphisms of the trivial G bundle X x G is isomorphic to the set G(X) =
Hom (X, G). Indeed consider a G equivariant isomorphism that commutes with the projec-
tions @ : X x G — X x G, observe that since @ is G equivariant and it commutes with the
projections it must of the form (x, g) — (x, @(x)g) for some ¢ : X — G.

* Given a G-scheme Y we can consider the product P x Y, it carries a natural right G action,
defined by (p,y) - g == (pg, g~ 'y) and since P is locally trivial the quotient P(Y) := (P x Y)/G
exists and it is naturally a Y-bundle over X. By a slight abuse of notation we will denote this
quotient with the same symbol used for the fibered product: P x¢ Y. We will also use this
notation when we are in other situations when the subscript is a group we will mean that we
are considering the quotient space by the prescribed group action.

Definition 8.1.2. Given H a subgroup of G, and a principal H bundle P over X the scheme P(G)
admits a natural right G action that makes it into a principal G bundle. Given a G bundle P over X
a H-reduction of P is a principal H bundle Py with an isomorphism Py (G) ~ P

Note that the map Py — Pn X G — P(G) ~ P which sends p — (p,1) — [p, 1] is clearly
H equivariant since [ph, 1] = [p,h] = [p, 1Jh. We deduce that up to isomorphism to give an H-
reduction is equivalent to give an H-bundle Py, and an H-equivariant map Py — P. Such a map is
easily checked to be an embedding. Thanks to this remark we will always speak of an H-reduction
as an H-invariant embedded sub-bundle Py C P.

We now focus on the trivial case. Consider the trivial G-bundle X x G, an H-trivial reduction is
therefore an H-equivariant embedding @ : X x H — X x G. Consider the map ¢ : X — G defined
by composing the embedding p — (p,1) € X x H with the projection X x G — G. This map
determines the embedding since, by H-invariancy on R-points, ® must be of the form

(p,h) = (p,e(p)h)  forp € X(R),h € H(R) and ¢(p) € G(R)

Consider now another H-equivariant map @’ : X x H — X x G that defines the same reduction,
or equivalently such that ® and @’ have the same image. Consider the corresponding morphisms
@, 9’ : X = G defined as above. The fact that ® and @’ have the same image translates to the
following condition on R-points:

{e(ph:he HR)} ={e'(p)h:h e HR)}  Vp e X(R)

But this is equivalent to ask that @(p)e’(p)~" € H(R)Vp € X(R). Or equivalently that there
exists a map P : X — H such that ¢ = ¢’ - .
We just proved the following:

Proposition 8.1.1. The set of trivial H-reductions of the trivial G-bundle over X, X x G is in natural
correspondence with
G(X)/H(X)
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More generally, given a trivial G-bundle P over X the set of H-reductions of P is in natural correspondence
with:
Px (X) xg(x) G(X)/H(X)

Where Px (X) is the set of sections of the projection map P — X. It is not empty since we are assuming
that P is trivial.

Proof. The first statement follows from the preceding discussion. While the second statement is a
natural generalization taking into account that the set of trivializations of P is equal to Px(X). O

8.2 Connections on vector bundles

We now turn our attention to connections. We will define what a connection on a vector bundle is
paying specific attention to the trivial case. In the next section the Tannakian formalism will allow
us to extend this definition to connections on a principal G-bundle.

By a vector bundle over an R-scheme X we mean an R-scheme V with a projection 7t : V — X
which is locally (in the Zariski topology) isomorphic to X xg AR and such that the transition
functions are R linear. The sheaf of sections of V is naturally a locally free sheaf of Ox modules of
equal rank n. Every vector bundle is uniquely determined by its sheaf of sections, therefore we
will make no difference between them and call them by the same symbols, each interpretation will
be clear from the context.

Definition 8.2.1. Let X be an R-scheme. An R-connection on a vector bundle V — X, is a morphism
between the Ox-modules:
V:V=Veo, Q)

which is R-linear and satisfy the following Leibniz rule
V(fo) =0oc® df + fV(o)
for any function f € Ox and any section o € V.

Remark 8.2.1. It is easy to check from the definition that the difference between two connections
is a homomorphism of Ox-modules, in addition given an homomorphism of Ox-modules o: V —
Ve Ql /g and a connection V the morphism V+o0:V = V® Ql s is still a connection.

We deduce from this that the space of connections, if not empty, is a torsor over Hom o, (V, V®
Ql r)-

Given a finite dimensional vector space V over C we attach to it a canonical functor R — V(R) =
V ®cR this is easily seen to be representable by A4™V and therefore is an affine scheme. We denote
by V. this scheme. V, may be also defined over an arbitrary C-algebra R by extension of scalars.
We call this Vi g, its points on a given R-algebra R’ are just V(R’) =V ®c R’ = (V ®¢ R) ®r R’.

Given a vector space and an R-scheme X we can define the trivial vector bundle with fiber V as
X xR Vq,r. Its sheaf of sections is canonically isomorphic to V @c¢ Ox.

Connections on trivial bundles are particularly easy to describe. Indeed consider the trivial
bundle X xr Vg, q for a given finite dimensional vector space. Consider the canonical connection

d: Vr ®r Ox — (Vk ®r Ox) ®0y Q;/R = Vgr ®r Q;/R
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Induced by the canonical differential d : Ox — Q}, /r and extended by linearity.

We know by Remark 8.2.1 that any connection is of the form d + A where A € Hom o, (Vg ®r
Ox, Vg ®r Q;(/R but this last space is isomorphic to End g (V) ®r Q;(/R(X). We proved

Proposition 8.2.1. Every connection on the trivial bundle X xg Vg q is of the form
d+A  with A€Endg(Vr)®r Q) r(X)

The category Bunx of vector bundles over X is naturally an additive tensor category and con-
nections satisfy some nice properties relatively to the tensor structure. In particular the following
hold:

Proposition 8.2.2. Let (V,Vv), (W, V) two vector bundles with connection over an R-scheme X.

o The vector bundle V. @ W has a natural connection namely Vy @ 1+ 1 ® Vv which is defined as
follows:

Vy@1+1@Vw: VW 3 VeWe Q) 01 ® 02— Vy(o1)® 02+ 01 ®@ Vw(o2)
It is easily checked to be a connection

* The vector bundle V' carries a natural connection VY, defined by the following formula:
d(p,0) = (VV(9),0) + (@, V(0)
forany ¢ € V¥, 0 €V

We now study how connections on trivial bundles change under different choices of trivializa-
tion. In particular choose a vector bundle isomorphism g : X x Vg o — X x Vg ¢, this is equivalent
to giveamap g: X — GLr(VR) or equivalently g € GLg(Vr)(X).

Proposition 8.2.3. Consider a connection V. = d + A on the trivial vector bundle X xr Vg, q and an
automorphism g € GLr(Vr)(X), then under this automorphism the connection is read as

g-V=d+gAg ' —dg-g'
Let’s explain what does this mean. Thanks to proposition 8.2.1 we may think of A as a matrix with coeffi-
cients in Q;( /R (X) while g may be thought as an invertible matrix with coefficients in Ox (X).

Then dg makes sense as a matrix with coefficients in Q) /g (X) and it makes sense to multiply (both
from left and right) matrices with 1-forms coefficients by matrices with functions coefficients so gAg~"
dg - g~ both make sense;.

and

Proof. Fix a basis of V let’s call it eq,...,e,. The vectors e; also define sections of the associated
vector bundle e; = e; ® 1. The matrix A is easily computed evaluating V on these sections: if
Viei) = Z]. ejwj; for some 1-forms wy; € QL/R(X) then we have Aj; = wyj indeed

V(Z fiei) = Z eidfi + Z fiV(ei) = Z eidfi + Z ejwﬁfi = d(Z fiei) +A- (Z eifi)
i i i i ij i i

To compute the matrix associated to the basis s; = ge; we must evaluate V on these sections and
express it in the same basis.
The rest of the proof is a straightforward computation. O
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8.3 Tannakian Formalism

We now give another description of principal G bundles over a scheme X. Loosely speaking we
will state a version of the Tannakian formalism which describes P in term of certain tensor functors.

Given a principal G-bundle P and V € Rep(G) a G representation we may construct as above
a bundle P(V), this turns out to be a vector bundle over X and given two representations V and W
there are natural isomorphism P(V & W) ~ P(V) @ P(W), P(V® W) =P(V) @ P(W).

Call P : Rep(G) — Buny the functor from the category Rep(G) of G representations of finite
dimension to the category Bunx of vector bundles over X that sends V +— P(V).

For the definition of rigid tensor category and the classical Tannakian formalism refer to [DM82].
We couldn’t find a precise reference which shows the following theorem, but we cite [FBZ04][Section
1.2.4] where it is stated as a fact.

Proposition 8.3.1. The functor P is an additive exact tensor functor between rigid tensor categories.
Theorem 8.3.1. The association P — P is fully faithful.

We will therefore denote by the letter P the functor associated with the G-bundle P, and thanks
to the above theorem we will make no difference between the principal bundle P and its associated
functor. Thanks to this formalism we are able to transpose the definition of a connection from the
"linear" setting of vector bundles to the "group" setting.

Definition 8.3.1. A connection on a principal bundle P : Rep(G) — Bunx is a family of connec-
tions Vv parametrized by the representations of G on the vector bundle P(V) such that Vygw =
Vv ® Vw and Vygw = Vv ® 1+ 1 ® Vyw in the sense of proposition 8.2.2 using the provided
identification P(V @ W) = P(V) ® P(W)

We focus one again on the trivial setting. Let Pcqn : Rep.(G) — Bunx the canonical trivial
principal bundle V = X x¢ V. Then giving a connection on P.qn is equivalent, by proposition
8.2.1 a family of elements Vy € End¢(V) ® Q;(/C(X) satisfying the property Vvgw = Vv ® 1+
1® Vy given a linear functional £ € Hom ¢x(Q), sc» CIX]) this condition express as follows. We
call Vv, the endomorphism of V obtained by contraction with &. Then we have

Vvew,e = Vve @1+10 Ve

Where by Vv, ® 1 we mean the endomorphism of V ® W defined by tensoring Vv, with the
identity. Using the Tannakian formalism for Lie algebras (see [DM82]), we obtain that the datum
V — Vv ¢ defines a unique element V¢ € g ® C[X], this association is clearly C[X]-linear in . If in
addition the pairing

Qe x Homix)(Q) /¢, CIX)) — CIX]

is perfect we may glue all these elements to a unique operator V € g ®c Q) c(X). We just proved
the following proposition.

Proposition 8.3.2. If (Q) /C)\/v =QJ /¢ then to give a connection on the principal trivial bundle Pcan
is equivalent to give an element of
V € g@c Qx c(X)

Along with this information we may restate proposition 8.2.3 in the group setting, analysing
how changing the trivialization for our principal bundle changes the connection;
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Proposition 8.3.3. Suppose X satisfies the condition of the above proposition and let P = X x G the trivial
G-bundle. And let g € G(X) be an automorphism of P. Consider a given connection on P:

V=d+A withAecgaQ
Then under the trivialization induced by g the connection takes the form
g-V=d+Ad4(A)—dg-g'

We will call this action the gauge action of G(X) on the space of connections.

8.4 The case of the formal disc

We now define what a connection on a vector bundle is in the case of the formal disc. The only
1,cont

subtle definition is that is more convenient to impose that the space of 1-form must be Q93"

Definition 8.4.1. Let X = Dy (we do not choose a coordinate here) and let V be a vector bundle on
X. An R-connection on V is a morphism of Ox modules:

V:V = VeopiRt
which is R-linear and satisfy the following Leibniz rule:
V(fo) =0oc® df + V(o)
for any function f € Ox and any section o € V.

The other definitions are identical to the one we defined above. So we have principal G-bundles
on Dg, and connections on them defined as family of connections on the associated vector bundles.

We consider R-groups which are actually defined over C, since the space Q{j’i‘};‘ is free of rank
1 its bidual is canonically isomorphic to it hence as in proposition 8.3.2 the space of connections
on the trivial principal G-bundle is in correspondence with the elements in

8 © Q5% = g @ RIt]dt

8.4.1 Action of coordinate changes

We just saw that we may express a connection on a trivial G-principal bundle may expressed as
an element of g ® R[[t]]dt.This expression is dependent on the choice of the coordinate t, we now
wonder how the same connection is expressed in terms of another coordinate s such that t = p(s).

We first consider the easier case of a trivial vector bundle. Let V = OF. The matrix element
defining the connection is expressed with coefficients in Qkﬁfﬁ‘/"]{ and it corresponds to the evalu-
ation of the connection on the constant sections e;. The latter sections of our vector bundle do not
change under change of coordinates since they are constant. We only have to express one forms in

the new coordinate.
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Remark 8.4.1. Let w = f(t)dt € Q}gﬁt"ﬁ‘/} then under a change of coordinate t = p(s) (or equiva-
lently under the automorphism induced by p) w is read as

w = f(p(s))p’(s)ds

Note that p’(s) is automatically invertible (as an element of R[[s]]) since its leading coefficient is
invertible in R.

This discussion extends naturally to the context of G-trivial principal bundles. Applying the
automorphism p(t) rewrites for each vector bundle with a connection d+ A (t)dt a new connection
d+ A(p(s))p’(s)ds and this formula defines an action on the space of G-connections.

Proposition 8.4.1. Let P = Dy x G the trivial vector bundle over Dg. Then we have a natural Aut O(R)
action on the space of connections on P which is described by the following formula:

p(t) - (d+ A(t)dt) = d+ A(p(t))p'(t)dt

8.5 Opers

We restrict ourselves to the case of the formal disc. From now on G will be a reductive group
defined over C of adjoint type, its Lie algebra will be denoted by g. We have a closed immersion
G — GL(g). We fix a torus and a Borel subgroup of G, H C B C G which gives us a Cartan
subalgebra and a Borel subalgebra of g, h C b C g. This gives us a basis («;) for the root system
and We also fix generators f; € g_, and callp_1 =) _; f;.

In what follows we are going to define the functor Opg (D) as a functor of C-algebras classify-
ing certain connections.

We start with a definition concerning reductions of bundles.

Definition 8.5.1. Let Hbe a subgroup of G and let V be a connection on the trivial principal bundle
X x G. Let ¢ : X = G a morphism defining an H-reduction of X x G. We say that V preserves this
reduction if

¢ ' Ved+uwithueh®Ql

This is to say that we require that when we bring the couple (X x G, @) to the trivial reduction (X x
G, 1) the connection must be with coefficients in the Lie algebra of H. This is an intrinsic property
(i.e. it does not depend on the choice of ¢) since we can only change varphi by right multiplication
with an element of H(X) and the gauge action of the latter group preserves connections of the
above form.

Definition 8.5.2. An R-Oper over D is a triple (P, V, Pg) where P and Pg are principal trivial G
and B bundles on Dy respectively, Pg C P is a B reduction of P and V is an R-connection such that
given any trivialization of P ~ Dr x¢ G such that Pg = Dr X¢ B C D x¢ G the connection takes
the form

V=d+() fi®pi+v(t)dt  with; € (R[t])* and v(t) € b @ R[[t]

An isomorphism of Opers over Dg, (P,V,Pg) and (P’,V’,P}) is an isomorphism P ~ P’ which

preserves the additional structures (i.e. sends V to V' and Pg to Pg).
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We remark here that the definition is consistent, suppose we have an isomorphism Dg x G —
Dr x G which preserves Dg x B. Such an isomorphism is given by a map ¢ : D — G or
equivalently an element of G(R[[t]]). Since we are asking that Dg x Pg is sent to Dg x Pg the
identity in B(R[[t]]) must be sent to an element of B(R[[t]]) but this is the image of ¢ so actually we
have ¢ € B(R[[t]]) and it is easy to check that the gauge action of B(R[[t]]) on the above form is still
a connection of the same form.

We are ready to define the space of Opers on the formal disc relative to a group G.

Definition 8.5.3. We define Opg (D) as the functor of C-algebras:
Opc(D)(R) :={R — Opers on D}/isom

to a morphism of C-algebras f : R — R’ we associate the map between the corresponding Opers
sending a triple (P, V, Pg) defined over R to the triple (Pr/, Vr/, (Pg)r’) where the bundles are
obtained through the base change Dr; — D and the connection is the pullback connection which
may be defined as

V=d+v(t) cd+gR[t]) — fV=d+fv(t) cd+gRIt])
Theorem 8.5.1. The functor Opg (D) is representable by an affine scheme over C.

In order to prove the above theorem we will need a couple of lemmas. We state first an easy
remark that follows from the discussion after definition 8.5.2.

Remark 8.5.1. The functor Opg (D) is naturally isomorphic to the functor

R {) fi @i +v(t): i € RIL]* and v(t) € bI[t]]}/B(RI[t]])

Where B(R[[t]]) acts on the above space through the gauge transformations defined in Proposition
8.3.3. Indeed we have a functorial map from the functor above, associating to an isomorphism
classof )} ; fi ® i +v(t) the Oper (Dgr x G,d+ ) ; fi ®; +V(t), Dr x B) and the discussion above
shows that this map induces a bijection on the isomorphism classes.

Now recall the isomorphism B = H x N, so that to an element x € B(R[[t]]) we can associate
a couple (t,n) € H(R[[t]]) xc N(R[[t]]). We first focus on the torus H, since G is of adjoint type
the pairing between the coroot lattice X" and the root lattice X is perfect. Recall that the functors
R+ H(R) and R — X" ®z R* are naturally isomorphic and call w}’ the elements in X" defined by
(Uiv(O(j) = (Sij.

It is easy to see that the action of N(R[[t]]) does not change the addendum } ; f; ® 1; since its
action only increases the weight. So only H(R[[t]]) acts on that addendum and there is a unique
element, namely 3 . wY ®; ', such that the gauge action of H(R[[t]]) puts the connection in the

form

Pt ®1+v(t) withv(t) € b R[]

Lemma 8.5.1. The action of N(RI[[t]]) on the space of connections of the form

d+ (p_1 @1+ v(t))dtwithv(t) € b @ RI[[t]]
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is free. In particular given such a connection there exists unique elements U € n(R[[t]]) and ¥(t) € VQR[[t]]
such that
d+(p1@1+vt)dt=exp(U)-(d+ (p_1 @1 +9(t))dt)

where V is the space defined in the preliminary section concerning exponents of a Lie algebra.

Proof. See [Fre07][Lemma 4.2.2] O

Corollary 8.5.1. The functor of Opers Opg (D) is naturally isomorphic to the functor
R {d+(p_1 ®1+v(t))dt:v(t) € Vo RIH]}

and therefore is representable. We will denote this expression for an Oper connection on Dr x G the
‘canonical” form.

Proof. The natural map
d+ (po1 @1+ v(t))dt— (Dr x G,d+ (p—1 ® 1 +v(t))dt,Dg x B)
is an isomorphism by the above discussion. O

We will now investigate the action of the group AutO on the functor of Opers. To represent the
space of Opers we chose a particular expression for the connection which is dependent of a choice
of a uniformizing parameter for the disc D, in other words a coordinate. Changing coordinate will
not change the intrinsic connection itself but it will affect, as we are going to see now, our preferred
description of it.

Consider an Oper connection d+ (p—1+v(t))dt applying the action discussed in 8.4.1 we obtain
that

p(t) - (d+ (p—1 +v(t))dt) = d+ (p_1p'(t) +v(p(t))p'(t))dt

This is of course still an Oper connection (we only applied a change of coordinate) but it is not
expressed anymore in our preferred system of coordinates. Applying the Gauge action of H(R([[t]]),
in particular of }_; wp’(t) = p"p’(t) we obtain

vp”(t)
p’(t)

And finally to bring it in the canonical form we can apply the gauge action of N(R[[t]]). The
formulas for this action are rather complicated and may be found in [Fre07].

d+p_1+Ad,ver(vie(t))e'(t) —p

8.6 Miura Opers

We defined what an Oper is and now our goal is to describe the center of the vertex algebra
C(Vi(g)) C Vi, (g) as the algebra of functions on the space of Opers. In order to do so we are now
introducing an auxiliary space, the space MOpg(D) of Miura Opers on the formal disc (we are
really interested in the subspace MOpg (D) gen of generic Miura Opers).

Recall that we embedded the center ¢(Vx(g)) in a bigger commutative algebra my.We will give
a geometric interpretation of 7y as the algebra of functions on the space of generic Miura Opers
on the disc. The space of generic Miura Opers on the disc turns out to be a N-torsor over the space
of ordinary Opers, using this information we will be able to embed the algebra of functions on the
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space of Opers as the intersection of the kernels of certain operators on the algebra of functions on
the space of generic Miura Opers. This description allows us to compute the character of the ring
of functions C[Op:g(D)] and having embedded both {(Vi(g)) and C[Opcg(D)] in the same space
we will be able to show that they are indeed equal.

Definition 8.6.1. An R-Miura Oper on the formal disc for the group G is a quadruple (P, V, Pg,Pg )
where the triple (P, V, Pg) is an R-Oper (recall that the principal bundles are defined over D) and
Pg_ is another B_-reduction for the lower Borel subgroup, which we require to be trivial and
preserved by V.

An isomorphism of R-Miura Opers is an isomorphism between the principal G-bundles which
preserves the rest of the structure.

We define now the space of Miura Opers as a functor like we did with the space of Opers. There
will be a slight difference though: we will see below that the functor we define is not representable,
but its sheafification in the fpqc topology is.

Definition 8.6.2. The space MOpg (D) of Miura Opers on the formal disc for the group G is defined
as the functor of R-algebras:

MOp¢(D)(R) = {R —Miura Opers}/isom

So a Miura Oper is just an Oper with some additional data. We are going to analyze how a
Miura Oper relates with the underlying Oper (i.e. the first three terms of the quadruple).
We first state a useful technical lemma.

Lemma 8.6.1. Consider a group G and a connection on the trivial principal bundle Dy x X which we
express as V. = d + A(t)dt with A(t) € g ® R[[t]]. Fix an element g € G(R).
Then there exists a unique element g(t) € G(RI[t]]) such that g(0) = g and

gt)-vV=d

Proof. We must solve
Adg() (A1) —g'(thg ' (1) =0

where by g’(t) we mean the derivative of g(t) along t. Embedding G in the general linear
group G — GL, we may consider elements of G and of its Lie Algebra g as matrices. The equation
above reads as

g'(t) = g(t)A(t)

and being a linear differential equation it admits a unique solution with g(0) = g. This solution
actually belongs to G(R[[t]]). This may be checked easily in matrix terms, indeed the conditions
g'(t)g~'(t) € Lie(G)(R[[t]]) and g(0) € G(R) imply that g(t) € G(R[[t]]). O

We now are ready to analyze the structure of reductions preserved by a connections.

Proposition 8.6.1. Let B be any subgroup of G and let Py a trivial principal B- bundle over Dg, embedded
in D x G and preserved by a connection V on the latter G-bundle. Then Pg o, determines Pyg: in addition,
given any B-reduction of Spec R x G there exists a unique B reduction preserved by V of Dr x G such that
its restriction to the 0 point is the given reduction of Spec R x G.
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Proof. Thanks to the last lemma we may, up to isomorphism of X x G, assume that the connection
is the trivial connection. We prove the following equivalent statement: B-reductions preserved
by the trivial connection on the trivial G-bundle Dg x G are in correspondence with B reductions
of the pullback SpecR x G at the 0 point SpecR — Dg. Consider a morphism ¢ : D — G
which determines the B-reduction Pg. Recall that ¢ is determined up to an element of B(RI[[t]])
and that multiplying ¢ for such an element does not change the reduction. By hypothesis (P
being preserved by the connection) @’¢ " belongs to the Lie algebra b ® R[[t]], this shows by
exponentiation as in the previous lemma that ¢ is determined by ¢(0) and that ¢ € ¢(0)B(R[[t]]).
Given two different maps ¢ and ¢’ that define the same reduction on the 0 point (i.e. ¢(0)B(R) =
©'(0)B(R) we of course have @B(R[[tl]) = @(0)B(R[[t]]) = ¢’(0)B(RI[t]]) = ¢'B(RI[t]]) so they
define the same reduction on Dg.

Vice versa given a fixed B-reduction of SpecR x G determined by { € G(R)/B(R) we can
consider the constant reduction defined by 1 € G(R) C G(R[[t]]) the choice of the representative
does not change the reduction by the above discussion. O

Thanks to the above proposition we gain the information that in the definition of a Miura
Oper, given the underlying Oper (P, V, Pg) the set of B_-reductions preserved by V are in natural
correspondence with the set of B_ reductions of Py. We are now going to make this remark more
precise.

By theorem 8.5.1 the functor of Opers is representable by an affine C-scheme Opg(D), let
Cl[Opg(D)] be its ring of functions and Doy, () the C[Opg (D)] formal disc. By the Yoneda lemma
there exists a universal triple (up to isomorphism) (PunV, Vuniv punivy which is a C[Opg(D)I-
Oper, so P¥""' is a principal trivial G-bundle on Doy (p), PE™ is a B-reduction which is a trivial
B-bundle and V¥™ is a connection on P*™ which satisfies the Oper condition.

The universal property of the universal triple is the following:

Given an isomorphism class of R-Opers (P, V, Pg) consider the associated R point SpecR —
Opg(D) then isomorphism class of the pullback through the induced map Dg — Doy (p) of the
universal triple is exactly coincides with (P, V, Pg).

In particular let P§™" the restriction of P*™ to the 0 point Opg(D) — Dopq(p). This is a
principal trivial G-bundle over the space of Opers. It satisfies the property that given an R-Oper
(P, V, Pg) the pullback of P§™' is exactly Po. In other words the fiber of the map

PS™™(R) — Opg(D)(R)
at the Oper (P, V, Pg) is in natural correspondence with Py (R).
Proposition 8.6.2. The functor
R — P§™™(R) xg(r) G(R)/B_(R)
is naturally isomorphic to MOpg (D).

Proof. Indeed consider both functors as fibering over the functor of Opers. Combining proposition
8.6.1 and proposition 8.1.1 we see that the fiber of MOpg(D)(R) at a given R-Oper (P, V,Pg) is
canonically identified with

Po(R) xg(r) G(R)/B_(R)

But this is exactly the fiber of Py™(R) x g(r) G(R)/B_(R) at the same Oper. O
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Corollary 8.6.1. The sheaf associated to MOp¢ (D) is representable by
P§™Y xg G/B
Proof. Indeed R — Po(R) X g(r) G(R)/B_(R) is a fat subfunctor of P{™ x g G/B. O

This gives us a nice description of the space of Miura Opers. We now turn our attention to-
wards generic Miura Opers.

Definition 8.6.3. Two reductions Pg and Pg_ which are trivial bundles of a trivial G-bundle P
are said to be in generic relative position if given any trivialization such that Py is identified with
XxB C X x G the morphism ¢_ defining the reduction has image contained in the open BB_ C G.

Recall first that the open set BB_ is isomorphic to N x B_ through the multiplication morphism,
this implies for instance that for every C-algebra R we have BB_(R) = B(R)B_(R). This definition
is independent of the choice of the trivialization and on the choice of ¢_. Indeed fix a trivialization,
then the set of morphism that gives the same B_ reduction is ¢_B(R[[t]]) so the condition ¢_ €
BB_(R) depends only on the B_-reduction and not on ¢_.

On the other hand changing the trivialization of X x G and asking that under this trivialization
Pg is still identified with X x B C X x G amounts to change ¢_ by left multiplication by an element
of B(R[[t]]) so also the definition does not depend on the choice of the trivialization.

Remark 8.6.1. Given two reductions in generic relative position of a trivial G-bundle P we have
that Pg N Pg_ is an H trivial reduction of P. through the embedding of X x H in X x G given by
n € N(X) where n is the projection of ¢_ € BB_(X) = N(X) x B_(X) under the second projection.

Proposition 8.6.3. Let (P,Pg) a couple of trivial G and B bundles over X respectively, with Pg a B re-
duction of G. Then the set of B_ reductions of P which are in generic relative position to Py is canonically
isomorphic to

(Pe)x(X) xp(x) BB_(X)/B_(X)

Where (Pg)x(X) is the set of sections of the projection map Pg — X.

Proof. We have a canonical isomorphism Px(X) = (Pg)x(X) xg(x) G(X), induced by the inclusion
Pg C P. The set of B_ reductions is canonically isomorphic to Px(X)/B_(X) and hence to

(Pg)x(X) xg(x) G(X)/B(X)

It is easy to see (choosing a trivialization of P for instance) to show that the subset of reductions
in generic relative position with Pg is exactly the subset

(Pe)x(X) X (x) BB_(X)/B(X)
O

Proof. Let’s show this at the level of functors. Fix a trivialization of P such that Pg is sent to
X x B C X x G. Fix a point p € X(R) and consider the R-fibers of Pg and Pg_ over that point. They
are respectively

Pep =1{(p,x):x€B(R)}  Pg_p={(p,o_(py):yeB_(R)}

Their intersection is given by the points (p,x) such that x € B(R) N ¢_(p)B_(R), now pick the
unique elements n € N(R) and b_ € B_(R) such that ¢(p) = nb_. It is easy to see that the
intersection above is just nH(R). O
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Definition 8.6.4. A Miura Oper (P, V, Pg, Pg_) is called generic if the reductions Pg and Pg_ are
in generic relative position.

Let’s make some remarks about the structure of isomorphism classes of generic Miura Opers.

Choose a trivialization of (P, Pg) such that they are identified with the trivial bundles Dr x B C
D x G. The connection V is by the Oper condition in the space d + (}_; filp; + b ® R[[t]])dt. On
the other hand since the B_ reduction is in generic position with Dy x B it is defined by a map
¢ : Dr — BB_, since changing by right multiplication with elements in B_ (R[[t]]) we may assume
as well that @ € N(R[[t]]). Thus we may find a trivialization (namely the one given by @ ") that
preserves the B reduction and for which we may trivialize also the B_ reduction.

We just proved that any generic Miura Oper the triple (P.Pg, Pg_) is isomorphic to the trivial
triple (Dg x G, Dg x B, Dg x B_). Under this trivialization the connection must be of the form

V=d+ () fupi+ult))dt withu(t) € b R[]

Now suppose that we have an automorphism of the triple (Dr x G,Dg x B,Dgr x B_). Such
an isomorphism is defined by a function ¢ € G(R[[t]]) and the condition that both reduction are
preserved means that ¢ € B(RI[[t]]) " B_(R[[t]]) = H(RI[[t]]). So the only group acting is H(R[[t]]).
As in the case of Opers, then the connection is uniquely expressible as

V=d+() fitut)dt=d+(p_1+u(t)dt withu(t)€ho R[] (8.1)

This discussion proves the following proposition.

Proposition 8.6.4. The functor of generic Miura Opers MOpg (D) is isomorphic to the functor

Conn(HP )(R) := {d + (p_1 +u(t)dt withu(t) € h @ R[]}
It is therefore representable.

Proof. The natural map that on R-points sends an element d + (p_; +u(t))dt to the generic Miura
Oper (Dg x G, d+(p—_1+u(t))dt,Dg x B, Dg x B_) is an isomorphism by the above discussion. [J

Using the above isomorphism we can describe a preferred system of coordinates for MOpg (D) gen.
Proposition 8.6.5. Let by the function on MOpg(D)gen defined at the level of functors
bi;n(R): MOpG(D)gen(R) = A'R)  d+ (p—1 +u(t))dt = ai(u(t))n

Where by o we mean the R[[t]] linear extension of & : h — C while for an element r(t) € R[[t]],
T(t)n € Ris the n-th coefficient, satisfying v(t) = Y, _o T(t)nt ™. Then the algebra of reqular functions
on MOpg (D) gen is isomorphic to the free polynomial algebra generated by the b; r.

C[MOpg (D)gen} = C[bi,n]izl bM<

Proof. Since every u(t) € h @ R[[t]] admits a unique expression

ut)= ) wwy
i=1,...,1

and since o;(u(t)) = ui(t) it is easy to see that MOpg (D) gen is isomorphic to an infinite product
of copies of A! and that the b; ,, introduced above are exactly the coordinates for this space. [
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8.7 AutO and Der O action on MOpg(D)gen

As in the case of the space of Opers, a choice of preferred representatives induces an action of
the group AutO on the space of Miura Opers, more precisely on the functor Conn(HP") we
easily describe it as follows. Consider an element p € AutO(R) and a generic R-Miura Oper
d+ (p—1 + u(t))dt. As we saw before we have that p acts on such a connection by

p(t) - (d+ (p—1 +u(t))dt) =d+ (p_1p’(t) +ulp(t)p’(t))dt

To compute the action on our preferred system of coordinates we have to bring this connection
in the form 8.1 and this is easily achieved by applying the gauge action of H(R[[t]]). In particular
if we consider the gauge action of p"p’(t) we get

V4 p”(t) ) dt
p’(t)
And since H is commutative Adp,vgr(q) acts trivially on h ® R[[t]]. We obtain therefore the
following proposition.

pYp'(t)- (d+ (porp'(t) +ulp(t)p’(t)dt) = d+ (p—1 + Adpv ooy (ulp(t))p’ (1) —p

Proposition 8.7.1. The action of Aut O on MOpg(D)gen or equivalently on Conn(HP") is given by
the following formula:

p(t) - (d+ (p—1 +u(t))dt) = d+ (p_1 +ulp(t))p’'(t) —p"

8.7.1 Action of Der O(C) on the ring of functions

Now that we described the action of Aut O on MOpg(D)gen We can also describe the action of
Der O(C) on the ring of functions C[IMOpg (D) genl. We are particularly interested in the action of
the operators L, = —t""19, =t + et™*', n > —1 which are topological generators of Der O(C).

Proposition 8.7.2. The operators L,, = —t™*19 act as on C[MOpg(D)gen] as derivations. On the
generators b; i they act according to the following formulas:

Ly -bijm =—mMbintm if —1<n<-—m

Ln-biyn=—mMn+1) if n>0

Ly bim=0if n>-—m

In particular Lo acts on C[MOpg(D)genl semisimply with integer eigenvalues and its character under
this action is given by

eh(CMOPeDlgen) = T T] 1= 82)
i=1,...,In<0

Proof. To compute the action of L, we have to apply the action of t — et™*! € Aut O(Cle]) on the
function b; , (this amounts to precomposing b, with (t — et™"1)~! =t + et™*') and then take
the derivative with respect to €. Thus we consider

bim : Conn(H? )(R) = R d+ (p_1+ut))dt=d+ (p_1 + Z wy Z Wint ™) dt Wi

i n<0
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And we precompose with the action of (t — et™*1)~!

(t+et™ 1) (d+ (p—1 +u(t))dt) =

v+ 1)net“‘)
T+Mm+1)etn

=d+ (po1 +u(®)dt+e(t™ Tu'(t) + (n+ Du(t)t” —pY(n+ nt™T)dt

=d+ <p1 +u(t+et™ N (14+ nm+1)et")—p

Now we write u(t) = Y, wy ¥ | _owi,nt ™' so that
/(1) + (4 Dut™ —pY (n+ 1t =
Z (,Ul/ Z ((_m —n-— 1)ui,m+n + (Tl + 1)ui,m+n - ém,fnn(n + 1))t7m71 =
i

m<0

Z w:/ Z ((_m)ui,ern - 5m,7nn(n + 1))t7m71

m<0

Where for m > 0 we set wi,m =0.
We therefore have

bi m ((t +et™) . (d+ (po1 + u(t))dt)) =Uim + €(— MUimin — Om,—nn(n+1))

Taking the derivative gives now the desired formulas. O
Theorem 8.7.1. The isomorphism of commutative algebras

7o("g) = CIMOpg(D)genl bin — —bin
is Der O equivariant.

Proof. This is obvious thanks to formulas of proposition 5.6.4 after noticing that the description of
MOpg(D)gen we gave do not change if we replace G with LG. O

8.8 Another description of MOpg(D)gen

We consider now a different, more geometric, description of generic Miura Opers. This description
will allow us to show that they form a N-torsor over the space of Opers.

Consider the fiber of the forgetful morphism MOpg(D)gen(R) — Opg(D)(R) over a given R-
Oper (P, V,Pg). Now the choice of a B_ reduction preserved by V is equivalent, by proposition
8.6.1, to the choice of a B_ reduction of Py. The additional condition to be in generic relative
position to Pg ma be easily expressed in terms of the relative position of Pg ¢ and Pg_ o.

Remark 8.8.1. Consider two reductions of the trivial bundle D x G for the subgroups B and B_.
Then they are in generic relative position if and only if their restrictions to the 0 point are in generic
relative position. Indeed we may suppose that Pg = Dg x B C Dgr X G, then the reduction Pg_
is in generic relative position with Dr x B if and only if any defining map ¢ : D — G (for Pg_)
takes image in the open BB_ C G. As we saw in the preliminaries this is equivalent to ask that
¢(0) takes image in BB_, but again, this is equivalent to ask that Pg ¢ and Pg_ o are in generic
relative position.
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Now combining the previous remark with proposition 8.6.3 we obtain that the B_ reductions
of a given R-Oper (P, V, Pg) are in natural bijection with the set

(PB,0)spec R(R) Xg(r) BB_(R)/B_(R)

Call Y/ the open B-orbit U := BB_/B_ C G/B_. Itis an affine scheme isomorphic to N. Combin-
ing the above remarks and a proof analogous to the one of corollary 8.6.1 we obtain the following
proposition.

Proposition 8.8.1. The space of generic Miura Opers is isomorphic to:
MOpg(D)gen = ng},"" xg U

In particular choosing a trivialization of P§™* which induces a trivialization of Py't" we obtain
that

MOpG (D)gen ~ OpG (D) x U ~ OpG (D) x N
Let’s describe more precisely this isomorphism at the level of functors.

Proposition 8.8.2. The functor of C algebras
R — {(DrxG,d+(p_1+v(t))dt,DrxB,Pg_) : v(t) € VRI[t]] and the quadruple is a generic Miura Oper }
Is isomorphic to the space of generic Miura Opers and to Opg (D) x N.

Proof. Since the principal bundles D x G and Dg x B are already trivialized and Pg_ is a trivial
principal B_ bundle in generic position with Dy x B. The set of such reductions is in correspon-
dence with morphisms ¢ € BB_(R[[t]])/B(R[[t]]) = N(RI[[t]]). The condition of being a Miura Oper
in this case is equivalent to ask that Pg_ is preserved by the connection. By proposition 8.6.1 the
set of morphisms ¢ € N(R[[t]]) that preserve the connection is in correspondence with N(R). This
shows that the functor defined above is isomorphic to Opg(D) x N. On the other hand we have

a natural map from our functor to the functor of generic Miura Opers. Trivializing Pg  under
the isomorphism induced by its defining morphism ¢ € N(R[[t]]) brings the quadruple into the
form of proposition 8.6.4 since the gauge action of N(R[[t]]) do not change the factor p_;. And
therefore the quadruples (Dr x G,d + (p—1 + v(t))dt,Dg x B,Pg_) are in correspondence with
isomorphism classes of generic Miura Opers. This shows that the functor above is isomorphic also
to MOpg(D)gen- O

After choosing such a trivialization we therefore obtain a left N-action on MOpg(D)gen. Since
the latter space is a product we obtain that Opg (D) ~ MOpg(D)gen/N.
The goal of the following section is to describe this action.

8.9 Action of N on the space of generic Miura Opers

We now investigate an action of the group N on the space of generic Miura Opers. The description
given in proposition 8.8.1 will allow us the describe Opg (D) with the quotient of MOpg(D)gen
by the action of N cited above. Finally we are going to be able to identify the algebra of functions
on Opg (D) as the subspace of n-invariants of the algebra of functions on MOpg(D)gen.
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Consider a trivialized generic R-Miura Oper (Dg x G,d + (p—1 + u(t))dt,Dg x B,Dg x B_).
Let’s describe the left action of N under the isomorphism of proposition 8.8.2. Intrinsically, since N
is acting on the left and the factor 'N” in MOp¢ (D) x N stands for the map defining the second re-
duction Pg_ o this action amounts exactly to translating with N the trivialization of Pg_ o. Indeed
we can change the B_ reduction Spec R x B_ by multiplying on the left by an element x € N(R).
The B_ reduction we obtain in this way is still in generic relative position with SpecR x B and
therefore by what we have done so far it corresponds to a unique B_ reduction Pg_ y of Dg X G
that is still in generic relative position with Dg x B. All B_ reductions preserved by the connection
and in generic relative position with D x B are obtained in this way. This generates the N(R)
action over the space of R-Miura Opers we wanted to describe.

We are now going to describe this action on the functor C onn(HP ). We are given a trivialized
R-Miura Oper
(Dr x Gyd+ (p—1 +u(t))dt,Dg x B,Dr x B_)

The left action of x € N(R) brings this Miura Oper to the Miura Oper
(Dr x G,d + (p—1 +u(t))dt,Dg x B,Pp_ )

where Pg_ , is the B_ reduction of Dg x G induced by the unique element x(t) € N(R[[t]]) such
that Pg_ « is preserved by V, or in other words, such that:
x(t) - (d+ (p—1 +u(t))dt) € d+ (p—1 + b @ R[[t]])dt
Now, in order to re-trivialize (Dr x G,V,Dg x B,Pg_ ) into the form (D x G,V’,Dg X
B,Dr x B_) we have to consider the isomorphism induced by x(t)~'. The connection is brought
to the form
x(t) - (d+ (p—1 +u(t))dt)
We proved the following: the action of x € N(R) on u(t) € h ® R[[t]] is given by the only
(x -u)(t) € h ® R[[t]] such that
d+ (p_1 + (x-u)(t))dt =x(t) - (d + (p_1 +u(t))dt)

where x(t) € N(R[[t]]) is the unique element such that x(0) = x and such that the right hand
side belongs to d + (p_1 + h ® R[[t]])dt.

8.9.1 Infinitesimal action of n

We now study the infinitesimal action of n on this space. We will focus on the generators of n
given by the fixed root space decomposition e; € gu,. Consider an e; € n(C) C N(Cle]) and an

element d + (p_1 + u(t))dt € Conn(HP " )(R). To calculate the action of e; we think as the latter
elements as belonging to Conn(HlDv J(R).

Let xi(t) € R[[t]] an element such that x;(0) = 1 and such that

[xi(t)e, p—1 +u(t)] — 0¢xi(t) € h ® R[[t]]
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If we write u(t) = Y, ui(t)w;” where u;(t) € R[[t]] and w’ is defined by o (w;’) = &;. The
equation reads as follows:

xi(t)hi —xi(t)ui(t)ey — 0¢xi(t)e; € b @ R[[t]]

So x;(t) must satisfy 9¢xi(t) = —xi(t)ui(t) and therefore is uniquely determined by its value
on 0. In particular the following expression holds for x; (t).
. _ ooa—mn—1 _ Uim, _m
xi(t) = Z xint =exp( Z = ™) (8.3)
n<0 m<0

Proposition 8.9.1. The unique element e (t) € N(R[[t]][eo]) such that
ei(t) - (d+ (p—1 +u(t))dt) € d+ (p_1 + b @ R[[t])dt
Is x(t)e;.
Proof. Indeed the action of x;(t)e; € N(R[[t]][e]) is given by
xi(t)ey - (d+ (p—1 +u(t))dt) = d+ (Ady, ()e; (P—1 +u(t)))dt — edexi(t)eidt =
d+ (p—1 +u(t))dt + e(lxi(t)es, p—1 +u(t)] — dyxi(t)e;)dt
And by construction of x;(t) it belongs to the space d+ (p_1 + h ® R[[t]][e])dt as requested. O

We now investigate the action of n on the ring of functions on MOpg(D)gen.
We look at the system of coordinates for MOpg (D) gen introduced in proposition 8.6.5. We are
now ready to see how e; € n acts on such functions.

Proposition 8.9.2. The action of e; as a vector field over MOpg (D) gen is given by the following formula:

ey = — Z aij Z Xi’nabajyn (84)

j=1,...1 n<0
where xi n is given by formula 8.3 making the substitution \; n — b and it is a polynomial in the
coordinates bj n.

Proof. We already now that the action of n is given by vector fields. Since a C[b; ] basis for the
vector fields is given by the derivations ﬁ we obtain that

0
ey = Z (ei b])n)m

j=1,...,L,n<0

and we can restrict ourselves to compute the action of e; on the coordinate functions bj ... We
will compute the action of e; on the R points of the scheme, the following calculations provide
therefore the action of —e; on the ring of functions.

By definition the action of e; on MOpg(D)(R) is given by the formula

e (d+ (p—1 +u(t))dt) =x(t)ey - (d+ (p—1 +u(t))dt)
=d+ (p_1 +u(t))dt+ e(Ix(t)ey, p—1 +u(t)] — d¢x(t)e;)dt
=d+ (p_1 +u(t))dt + exi(t)hy
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Where the last equality follows from the fact that x; (t) is chosen in order to make [x;(t)ei, p—1+
u(t)] —0¢xi(t)es = [xi(t)ei, p—1] = xi(t)hi. Now by definition the action of e; on b; , is computed
by evaluating this point with b; , to obtain a R[e] point of A', taking the derivative with respect
to e and finally evaluating at e = 0.

bj n <ei (d+(p—1 + u(t))dt)) =bjn(d+ (p_1 +ult))dt + exi(t)hidt) = ujn + exj(hi)xin

Then taking the derivative with respect to € gives us exactly
ei-bjn = —o5(hi)xin = aijXin
as required. O

This description allows us to describe the algebra of functions on Opg (D) as the intersection
of the operators e;.

Theorem 8.9.1. The algebra of functions on the space of Opers on the disc Opg (D) equals the intersection
of the kernels of the operators e;
ClOpg(D)] =

i=1,...,

ker(e;)
1

Proof. Since MOpg(D)gen is isomorphic to the trivial N-principal bundle over Opg (D). We have

C[Opg(D)] = CIMOpg(D)gen]™ = CIMOpg(D)gen]™ =[] ker(ei)
i=1,...,1

where the last equality follows from the fact that the e; generates n while the other equalities
follow from the the fact MOpg(D)gen >~ Opg(D) x N. Indeed N acts only on the second factor,
and hence also on the second factor of the decomposition

(C[MOPG(D)gen] = C[OPG(D)] ® (C[N]

The same is true for the action of n. Since the ring of invariant function for both actions is the ring
of constant functions the theorem is proved. O

8.10 Computation of the character

Our last goal is to compute the character under the action of the operator Ly = td: of C[Opg(D)].
Consider the isomorphism MOpg(D)gen =~ Opg(D) x N we introduced in proposition 8.8.2.
Recall that under this isomorphism N acts by left multiplication on the second factor. Always
under this isomorphism we have

CIMOpg(D)] = C[Opg(D)] ® C[N]

and the action of N(C) on this ring of functions is only on the second factor. On the other hand
n(C) acts by derivations and acts like 0 on the first factor C[Opg(D)] ® 1. The grading operator Lo
acts by derivations as well.

It is reasonable to think that taken coordinates for N y such that e« - yo = 1 they must have
degree ht(«). We show this in detail:
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Proposition 8.10.1. The Operator Ly = —t0y preserves the subalgebra C[N]. And acts like the derivation
induced by the adjoint action of p' (1 + €) € H(Cle]).

Proof. In order to do prove this proposition we keep considering the isomorphism of proposition
8.8.2.

Under this description consider the generic R-Miura Oper (Dgr x G, d+(p_1+V(t))dt, Dgr x B, x)
where x € N(R) determines the unique B_ reduction preserved by the connection. We view this
as an Rle] generic Miura Oper, then applying the left action of t + et amounts to changing the
coordinate in the connection but does not effect the B_ reduction. Thus:

(t+et)-(Drx G, d+(p_1+v(t))dt, Dr xB,x) = (DrxG, d+(p—1 (1+€)+v(t+et)(1+€))dt, Dg xB, x)

To bring it again in the our canonical form we must change trivialization. It suffices to change
trivialization with the element p¥ (1 + €) € H(Cle]) € H(R[e]). This brings the connection in the
form

P/ (1+¢)- <d+ (p1(1+e)+v(t+et)(1+ (—:))dt) =d+ (p1 + Adpv (146 (V) (T + e)))dt

This equality follows from the fact that (t + et)” = 0. Notice that since v(t) € V ® R[[t]] we
have that Ad,v (14¢)(v(t)(1 + €)) € V @ R[[t]] so the connection is brought in the canonical form.
This change of trivialization brings the B_ reduction in the B_ reduction associated to the point
(p¥(1+ €))x € BB_(R[e)/B_(Rle]) its representative in N(R[e]) is exactly

AdPV(1+€)(X) € N(R[e})

This proves the second part of the proposition, but it easily implies the first one.

Indeed since we showed that (t + et) acts separately on the two factors of the product it is
evident that taking the derivative of a function constant on the first factor yields a function of the
same form. O

Corollary 8.10.1. The character of the subalgebra C[N] under the operator Ly = —td is given by the
following formula.

1 1 di 1
enCND = T 7= =_11 1_1 g

xed!

Proof. Consider the H-equivariant isomorphism exp : n — N, where H acts on both spaces through
the adjoint action. We can restrict ourselves to computing the character of Lo, which acts like an
element of H on the first space.

Consider a coordinate function onn, yg : n — A'. Then for any R-point of n, }_ | r«e, we have

Uf5<pv(] +€)- (Z Toceoc)) = yﬁ(zraea + €(Z ht(o‘)rcxeoc)) =Tg + eht(B)TB

And we immediately get Ly - yg = ht(f)yg. The first part of the equation immediately follows
while the second equality follows from the discussion in the introduction about the exponents of
g. O
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Corollary 8.10.2. The character for C[Opg (D)] under the action of Lo is given by the following formula.

1
ch(Clops(D)) =] [ (8.5)
i=1n>d;+1

1—qn

Proof. This is a straightforward computation. We have ch(C[MOpg(D)gen] = T, [Theo ﬁ
and
ch(CIMOpg(D)genl) = ch(C[Opg(D)1)ch(CINI)

And then we use the formula of corollary 8.10.1 O

8.11 Identification with the algebra of function on Opers

We are now ready to prove theorem 4.6.1.
Consider the isomorphism of theorem 8.7.1.

9("g) — CIMOpg(D)genl

Recall that we already proved in Proposition 6.2.1 that the center of the vertex algebra injec-
tively maps in 9. Moreover we showed in Chapter ‘Screening Operators’ that

c(tg) C (ker(Vi)

lies in the intersection of the kernels of the screening operators. But under the isomorphism
mo(tg) = CIMOpg(D)], by comparing formulas in Proposition 7.5.3 and 8.4. We get that V; = —e;,
thus
¢("g) € [ker(Vi) =(ker(ei) = C[Opg(D)]

But we also computed the characters of both spaces under the action of Ly, and they are indeed
equal.

Theorem 8.11.1. The center of the vertex algebra ((g) is isomorphic in a Der O equivariant way to the
algebra of reqular functions on the space of -G Opers on the disc: Opi (D).

Proof. The embeddings presented above
((*g) C CIMOpG(D)gen]  ClOpg(D)] € CIMOpG(D)gen]
are Der O equivariant by construction. Therefore the embedding
¢("g) C ClOpg(D)]

is Der O equivariant as well. By comparison of formulas 6.6.2 and 8.5. We get that the characters
of these spaces under the action of L, are indeed equal. Since the morphism is Der O equivariant
we obtain that

¢(*g) = ClOpg(D)]

Making the substitutions "¢ — g and G —" G we conclude the proof. O
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