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Chapter 1

Introduction

In this first chapter of the thesis we are going to define the main objects of interest and our main
goal which is the description of the center of an enveloping algebra associated to an affine Kac-
Moody algebra.

A very important class of groups is the one of loop groups. Given G a connected algebraic
reductive group over the complex numbers, we consider its loop group LG. It may be viewed as
the group formed by the maps from the pointed formal discD∗ → G and it is defined as the group
functor

LG : CAlg→ Grp LG(R) = G(R((t)))

Where R stands for an arbitrary C algebra and R((t)) is the algebra of Laurent series with
coefficients in R. If the group is affine then it can be proved that LG is an ind-scheme.

In order to study the representation theory for loop groups it is natural to investigate the rep-
resentation theory for their Lie algebras.

Let g = Lie(G), since the group we are considering is affine we have

g(R) = g⊗ R = ker(G(R[ε]→ G(R))

We easily deduce that that Lie(LG) = g((t)) =: Lg or more precisely

Lie(LG)(R) =: Lg(R) = g(R((t))) = g⊗ R((t))

We are interested in the C points of this Lie algebra which we will continue denotig by Lg or
g((t)). Note that the bracket here is simply determined by the bracket on g, extended by C((t))-
linearity. In the study of the latter algebra it is particularly interesting to study the representation
theory of its central one dimensional extension ĝk. The following proposition, that we will not
prove, holds.

Proposition 1.0.1. Let g be a simple Lie algebra over the complex numbers. Then the second cohomology
group H2(Lg,C) is one dimensional and generated by the cocycle

cg(X⊗ f, Y ⊗ g) = κg(X, Y)Rest=0(fdg)
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where κg is the killing form on g while f and g are two Laurent series with coefficients in C. Since this
group classifies isomorphism classes of central one dimensional extensions of Lg we obtain that they are in
correspondence with C.

Definition 1.0.1. Let g be a simple complex Lie algebra and k ∈ C a complex number. We define
the affine Kac-Moody algebra (or simply the affine algebra) ĝk to be the central extension of Lg
determined by the cocycle kcg where cg is the cocycle of the preceding proposition. It satisfies the
natural exact sequence

0→ 1C→ ĝk → Lg→ 0

As a vector space we have
ĝk = Lg⊕ 1C

while the bracket is defined through the formula

[X⊗ f, Y ⊗ g] = [X, Y]⊗ fg− kκg(X, Y)Rest=0(fdg)1 (1.1)

We will sometimes write for convenience kκg = κ, this is of course an associative form on g
since it is a scalar multiple of the Killing form. This construction is available also for a general Lie
algebra g with an associative symmetric form κ, the hypothesis of g being simple bounds us to
consider only multiples of the Killing form.

Remark 1.0.1. The affine algebra ĝk posses two additional natural structures.

• It is in a natural way a topological vector space, with the topology induced by the vector
subspaces g⊗ tNg[[t]] with N ∈ Z;

• It carries a natural AutO module structure. Indeed since the bracket on Lg is C((t)) linear
AutO naturally acts on it along the factor C((t)). On the other hand the cocycle defining the
affine algebra κ is invariant under such an action since the residue Rest=0fdg is invariant
under automorphisms. The action of AutO extends therefore to the affine algebra ĝk, it
naturally induces an action of its Lie algebra DerO.

We are interested in the the category of ĝk representations which are smooth (i.e. tNg[[t]] acts
locally trivially) and in which 1 acts as the identity.

Definition 1.0.2. A moduleV over ĝk is said to be smooth if 1 acts as the identity and if, for every v ∈
V , there exists a sufficiently large natural number N such that the subalgebra tNg[[t]] annihilates
v:

tNg[[t]] · v = 0

Our goal is to describe the center of the category of smooth ĝk modules, we will see that this is
the same as computing the center of a certain associative algebra. This is of crucial importance in
studying the representation theory of ĝk. Every central element acts intertwining with the action
of ĝk on any given module. In particular on irreducible finite dimensional representations the
center acts like the multiplication of a character. The study of the center then permits for instance
to distinguish finite dimensional representation through the associated character.

In the following paragraph we briefly recall what the center of an abelian category is and ex-
plain that it essentially coincides with the notion of the center of an associative algebra when our
category is the abelian category of modules over an algebra.
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1.1 The center of an abelian category

Recall the definition of the center of an abelian category, which is by definition the set of endomor-
phisms of the identity functor.

Definition 1.1.1. Let C be an abelian category. If the natural transformations from the identity
functor to itself form a set we call it Z(C) the center of the category. An element of the center of C
is therefore a collection of endomorphisms eM for each object M ∈ C such that for any morphism
ϕ :M→ Nwe have eN ◦ϕ = ϕ ◦ eM.

It is easy to see that, when it is a set, the center of an abelian category is an abelian ring, if
moreover the category is k-linear for some field F the center is easily seen to be a F commutative
algebra. Indeed, given two elements e, f ∈ Z(C), since C is abelian, it is easy to see that (e+ f)M :=
eM + fM is still an endomorphism of the identity functor and the same is true for the composition
(e·f)M := eM◦fM. Using the fact that e, f are central and thatC is abelian one can easily prove that
these operations define the structure of a commutative ring. The definition of scalar multiplication
is done similarly.

Moreover, by definition, we have a natural action of Z(C) on any object M ∈ C, meaning a
morphism of algebras Z(C)→ EndC(M,M). We consider now C linear categories, so that Z(C) is
a C algebra.

Consider the scheme S = Spec (Z(C)) and a closed point x ∈ S which gives a homomorphism
ρx : Z(C)→ C. We may consider the fullsubcategory Cx of Cwhose objects are the objects in C for
which Z(C) acts accordingly to the character ρx.

As an example consider g a simple finite dimensional Lie algebra over C. The abelian category
of g-modules is equivalent to the category of left U(g) modules.

We now describe the center of this category: we claim that it equals the center Z(g) of the
associative algebra U(g).

Indeed any central element defines, through its action on modules, a central element of the
category and we obtain a morphism Z(g) → Z(C). This is easily seen to be injective since for
any element z ∈ Z(g) its action on the module U(g) is not trivial. On the other hand consider
an element e ∈ Z(C), consider its action on the module U(g) and in particular the element e(1).
Since e is central and right multiplication on U(g) is an endomorphism of g-modules e(1) satisfies
e(x) = e(1 · x) = e(1) · x but by definition emust commute with the action of U(g) so we also have
that e(f) = e(f · 1) = f · e(1) we deduce from this that e(1) ∈ Z(g) and it is quite easy to see that
e(1) determines e on all modules.

In this particular case if we focus on finite dimensional representations we have that the cat-
egory is ‘generated’ by irreducible representations, on which the center acts by mulitplication
by scalars. The category of g modules of finite dimension is generated by the full subcategories
(g-mod)x defined above, for x a closed point of SpecZ(g). In this sense g-mod may be thought of
as ‘fibering’ over SpecZ(g).

1.2 The completed enveloping algebra

Analogously to the finite dimensional case, in which given a Lie algebra g we consider its envelop-
ing algebra U(g) we try to define an associative algebra whose left modules correspond to smooth
representations of ĝk. It turns out that actually we must consider a topological associative algebra
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and its continuous modules. It is clear that the classical enveloping algebra U(ĝk) does not suffice
for this purpose, but a slight modification of it will do the trick.

The condition of 1 acting as the identity may be imposed by considering first the algebra
Uk(ĝ) := U(ĝk)/(1 − 1). Consider next the topology on Uk(ĝ) induced by the left ideals In :=
U(ĝk)(t

Ng[[t]]). It may be checked that the product on the enveloping algebra is continuous for
this topology and therefore may be extended to a product on the completed enveloping algebra

Ũκ(ĝ) = lim←−
n

Uk(ĝ)/In

Note that this is a limit ofUk(ĝ) modules and not a limit of algebras. Anyway, by the continuity
of the bracket, one may extend it to Ũκ(ĝ). This is a complete topological algebra.

Proposition 1.2.1. The category of smooth ĝk modules is equivalent to the category of smooth left Ũκ(ĝ)
modules:

ĝk- modsmooth = Ũκ(ĝ)- modcont

Proof. We prove that to give the structure of a smooth ĝk module on a C vector space V is equiv-
alent to give a structure of left Ũκ(ĝ) smooth module. Given a smooth ĝk module M it gains
naturally a structure U(ĝk)/(1 − 1) module (since 1 acts as the identity on M). In addition the
smoothness condition on ĝk implies thatMwith the discrete topology is a continuousU(ĝk)/(1−1)
module for the topology induced by the ideals In and hence a Ũκ(ĝ) continuous module.

On the other hand consider a continuous Ũκ(ĝ) module M. The continuous homomorphism
of Lie algebras

ĝk → Ũκ(ĝ)

induces a structure of ĝk module on M. The verification that the above constructions are one the
inverse of the other is trivial.

Notice that while Ũκ(ĝ) is a left module over itself, it is not a smooth module. Indeed a smooth
module over a topological algebra is to be intended as a vector space equipped with the discrete
topology and with a continuous action for this topology. Ũκ(ĝ) does not satisfy this continuity
condition.

Fortunately for us, the quotients by the left ideals In, which are always defined to be as the left
ideals generated by tNg[[t]], really are continuous modules.

Proposition 1.2.2. The centerZκ(ĝ) of the category of ĝk smooth modules equals the center of the completed
enveloping algebra Ũκ(ĝ).

Proof. It is clear that every element of Z(Ũκ(ĝ)) defines an element of Zκ(ĝ) and that we obtain a
morphism

Z(Ũκ(ĝ))→ Zκ(ĝ)

We now prove injectivity and surjectivity.
As injectivity is concerned let x ∈ Z(Ũκ(ĝ)) be a central element which is sent to 0 through

the above morphism. Consider its action on the smooth modules Ũκ(ĝ)/In which are all trivial
by hypothesis. Then we have that x = x · 1 ∈ In for all n ∈ Z≥0, it is easy to check though that
∩nIn = 0 and therefore x = 0.
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On the other hand consider an element e ∈ Zκ(ĝ) in the center of the category. Consider
also en := e(1) ∈ Ũκ(ĝ)/In: this collection provides us with a unique element e(1) ∈ Ũκ(ĝ)

since by hypothesis e is central and the projections π : Ũκ(ĝ)/In → Ũκ(ĝ)/Im are morphism of
representations. As in the case of the example in the previous paragraph it is not difficult to prove
that e(1) is central and that determines completely e.

Thanks to the above proposition we will call the center of the enveloping algebra Zκ(ĝ). The
goal of the thesis is the description of this center as k ∈ C varies.

It turns out that Zκ(ĝ) is trivial almost for all complex numbers except for a specific value of k
we will focus on the description of the center in this non-trivial case.

We are interested in a geometric description: as we noticed before the affine algebra ĝk carries
a natural AutO action. This action extends to U(ĝk) and ultimately to Ũκ(ĝ) since the subalge-
bras tNg[[t]] are actually invariant under the AutO action. By geometric we mean a description
which takes into account this action and states an isomorphism between Zκ(ĝ) and some algebra
of functions over a space related to the disc.

We will focus on proving the second part of the following theorem due to Feigin and Frenkel,
following [Fre07].

Theorem 1.2.1. Let g be a simple Lie algebra over C. The following description for the center of the
completed enveloping algebra of the affine Kac-Moody algebra ĝκ holds:

• If κ 6= −1
2
κg the center Zκ(ĝ) is trivial (i.e. isomorphic to C);

• If κ = −1
2
κg (we denote κc := −1

2
κg the critical value) then

1. The center Zκc(ĝ) contains a free polynomial algebra in an infinite number of variables which
topologically generates it. In particular it is isomorphic to the completion of a polynomial algebra
in an infinite number of varibles;

2. There exists a natural (AutO, DerO)-equivariant isomorphism

Zκc(ĝ) = C[OpLG(D∗)]

with the space of functions on the space of LG-Opers on the punctured disc D∗.

Here LG stands for the Langlands dual group of G while we postpone the definition of the
space of Opers to the last section. We remark that actually part 2 of the second statement implies
part 1: it is not difficult to algebraically describe C[OpLG(D∗)] as the completion of a polynomial
algebra. We anyway state these results separately to remark the algebraic nature of the first state-
ment and the geometric nature of the second one.

1.3 Strategy of the proof and organization of this work

In this section we give a brief outlook of how the proof of Theorem 1.2.1 will be carried out
throughout the thesis. We will make references to various constructions, the reader may jump
through the chapters in order to take a look at the various definitions.
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The entire thesis revolves around chapters 2-8 of Edward Frenkel’s book ‘Langlands Corre-
spondence for Loop Groups’ [Fre07]. Our goal is mainly to follow Frenkel’s proof of Theorem
1.2.1, paying specific attention and writing down all the details and the computations that do not
appear in the book. We will, from time to time, omit some proofs and refer to the book, especially
for the ones that are already written in detail.

Throughout this discussion we assume that any simple Lie algebra g considered is equipped
with a chosen maximal toral subalgebra h and a chosen basis for the root system Φ relative to h
which induces a decomposition g = n+ ⊕ h⊕ n−. We call b+ := n+ ⊕ h the upper Borel subalgebra
and b− := n− ⊕ h the lower Borel subalgebra.

The vertex algebra Vκ(g)

We start by considering a different algebraic object from the completed enveloping algebra: the
vertex algebra Vκ(g). Vertex algebras are algebraic structures which arise quite naturally in this
context. A vertex algebra V is essentially a vector space equipped with infinitely many products,
indexed by the natural numbers Z and denoted byAnB forA,B ∈ V , which satisfy certain axioms.
We are able to attach to any affine algebra ĝκ a vertex algebra closely related to it, we call it Vκ(g):
the vacuum Verma module. It is a ĝκ module constructed as follows

Vκ(g) = Ind
ĝκ
g[[t]]⊕C1C|0〉

where C|0〉 is the trivial g[[t]]⊕ C1 module where g[[t]] acts like 0 and 1 acts like the identity.
The structure of vertex algebra is induced from the structure of ĝκ module. This object is way

easier to study than the complete enveloping algebra: first it has a simpler description as a ĝκ
module, and second the structure of Vertex algebra allows to simplify a lot of calculations.

This is all done in chapter 3: we introduce the basic theory of vertex algebra and define both
Vκ(g) and the Virasoro vertex algebra, the latter is a very important example of vertex algebra as
well as it is crucial for our goals.

There is a natural notion of center of a vertex algebra and it turns out that the center of Vκ(g),
which we call ζκ(g), coincides with the space of g[[t]] invariants

ζκ(g) = Vκ(g)
g[[t]]

it has a natural structure of commutative C algebra induced by the product A · B = A−1B.
It is quite natural to start studying the center of the vertex algebra in order to obtain some

information about the center of Ũκ(ĝ). In order to describe it we consider the natural filtration on
Vκ(g) induced by the classical PBW filtration. The associated graded space has a natural structure
of commutative algebra. We are able to prove an isomorphism

grVκ(g) ' C
[
g∗[[t]]

]
with the ring of regular functions on g∗[[t]]. This an algebra isomorphism which intertwines with
the action of AutO on both spaces. From this isomorphism we obtain a natural embedding

gr
(
Vκ(g)

g[[t]]
)
= gr ζκ(g) ↪→ C

[
g∗[[t]]

]g[[t]]
=: Inv g∗[[t]]

Note that in contrast with the finite dimensional case it is far from being obvious and it is actually
false in general that this embedding is an isomorphism.
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We focus on the proof of the following theorem which is the vertex algebra analogue of theorem
1.2.1:

Theorem 1.3.1. Let g be a simple Lie algebra over C and let Vκ(g) the vertex algebra associated to the affine
Kac-Moody algebra ĝκ of level κ. Then the following hold:

• If κ 6= κc the center ζκ(g) is trivial (i.e. spanned by |0〉);

• If κ = κc we have

1. The immersion gr ζκc(g) → Inv g∗[[t]] is an isomorphism and therefore ζ(g) is a free polyno-
mial algebra in an infinite number of variables;

2. The center ζ(g) of Vκc(g) is isomorphic in an (AutO, DerO) equivariant way the the algebra
of functions on the space of LG Opers on the formal disc D.

ζ(g) = C[OpLG(D)]

From Vκ(g) to Ũκ(ĝ)

Before diving into the proof of theorem 1.3.1 we explore in more detail the connection between
Vκ(g) and Ũκ(ĝ). We define a functor which associates to any vertex algebra V a Lie algebra U(V).
The latter is spanned by elements of the formA[n] witA ∈ V and should be understood as a formal
analogue of the Lie subalgebra of EndV spanned by the endomorphisms induced by the various
n-products An (·) ∈ EndV . The bracket on U(V) is defined following the vertex algebra axioms.
This construction is the key ingredient to pass from the vertex algebra Vκ(g) to the completed
enveloping algebra Ũκ(ĝ).

We construct and prove in theorem 4.2.1 that there exists an homomorphism of Lie algebras

U(Vκ(g))→ Ũκ(ĝ)

which has two crucial properties. First it is possible, using only the structure of a vertex algebra,
to build a complete topological associative algebra from U(V) which we call Ũ(V). In the case of
V = Vκ(g) the algebra to homomorphism above induces a continuous homomorphism of algebras
Ũ(Vκ(g)) → Ũκ(ĝ) which we prove in theorem 4.2.2 to be an isomorphism. Therefore the vertex
algebra Vκ(g) contains all the information of the enveloping algebra. Secondly we find that the
composition

U(ζκ(g))→ U(Vκ(g))→ Ũκ(ĝ)

has image contained in the center. Thus if the center of the vertex algebra is not trivial we can
construct various central elements in the enveloping algebra. We prove a more precise statement:
in corollary 4.6.2 we prove that under the assumption that point 2 of theorem 1.3.1 is true we are
able to deduce that ζ(g) topologically generates Zκc(ĝ) (only at the critical level). This is done by
considering various graded spaces associated to Zκc(ĝ) and describe them as algebras functions
on certain geometric spaces related to g∗[[t]].

On the other hand it is shown in [Fre07] that the third part of theorem 1.3.1 implies the gometric
description of the center of the enveloping algebra.

To sum up we reduced ourselves to treat two different (although related) problems: the first
one is to show that gr ζ(g) = Inv g∗[[t]] and the second one is to identify ζ(g) with the algebra
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of functions on the space of Opers. From this point onward we will forget about the enveloping
algebra and restrict our attention to the vertex algebra setting.

Everything discussed so far is treated in chapter 4. We start with the construction of U(V) as
well as the definition of its Lie bracket, continue with the identification of Ũκ(ĝ) with Ũ(Vκ(g))
and finally we study the center.

Invariants

We begin our quest to solve our two problems with facing the equality gr ζ(g) = Inv g∗[[t]]. A
good starting point is surely an efficient description of the space Inv g∗[[t]].

We start with the finite dimensional case. It is known that given a simple Lie algebra g the space
of invariants C[g∗]g is a free polynomial algebra generated by certain homogeneous polynomials
P1, . . . , Pl with l = rank g. It is reasonable to think that a description of C

[
g∗[[t]]

]g[[t]] may be
deduced from this description of C[g∗]g.

This is indeed the case. We approach this problem using the formalism of Jet Schemes. To any
scheme of finite type X over C we associate another scheme called JX, the C points of the latter
are exactly the C[[t]] points of X. Thus to formally define g∗[[t]] as a scheme we consider the Jet
scheme Jg∗. This formalism allows us to prove in theorem 4.5.2 that

Inv g∗[[t]] = C[Pi,n]i=1,...,l;n<0

where the Pi,n are certain polynomials which are easily described from the polynomials Pi.
This description of Inv g∗[[t]] is still not enough. We move a little bit our problem to an anal-

ogous one which concerns a Verma module for ĝκc . The motivation behind this argument lies in
the fact that this Verma module is easier to describe, as we will see in the next section.

Let n̂+ := n+ ⊕ tg[[t]] and let b̃+ := b+ ⊕ tg[[t]] = h⊕ n̂+. Consider the trivial b̃+ ⊕ C1 module
C0 where b̃+ acts like 0 and 1 acts like the identity. Define the Verma module M0,κc as the induced
module

M0,κc := Ind
ĝκc
b̃+⊕C1

C0

notice that this is a little bit larger than Vκc(g). Indeed there is a natural surjective ĝκc linear
morphism M0,κc → Vκc(g). The problem of comparing the graded space of the g[[t]] invariants
on Vκc(g) with the space of g[[t]] invariants of the graded space grVκc(g) translates in this set-

ting to the problem of comparing gr
(
Mb̃+

0,κc

)
with

(
grM0,κc

)b̃+ . The common point of these two
problems is the following commutative diagram:

gr
(
Mb̃+

0,κc

)
gr
(
Vκc(g)

g[[t]]
)

gr
(
M0,κc

)b̃+
gr
(
Vκc(g)

)g[[t]]
We are able to describe

(
grM0,κc

)b̃+ identifying grM0,κc with the rings of functions on a cer-
tain geometric space, and a reasoning analogous to the one needed to compute Inv g∗[[t]] allows
us to completely describe it and to show that the lower horizontal map is surjective.
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Notice that if we could prove that the left vertical arrow is an isomorphism we could easily
deduce that the right vertical arrow is an isomorphism as well. Thus we reduced ourselves to

describe the space of invariants Mb̃+

0,κc
.

Free field realization

A common tool to face both the problem of describing Mb̃+

0,κc
and the problem of giving a geometric

interpretation of ζ(g) is the so called free field realization of Vκc(g). It consists in an embedding
of vertex algebras of Vκc(g) into a free field algebra which is a kind of vertex algebra particularly
easy to study.

The idea behind this construction is found in the finite dimensional case: a way to construct
the so called Harish-Chandra homomorphism

Z(g) ↪→ C[h∗]

which is essential to identify the center of the classical enveloping algebra Z(g) with the ring of
functions on h∗ invariant by the action of the Weyl group, is the following.

Consider G to be the simply connected Lie group with g as a Lie algebra and let N+, H,N− be
the subgroups defined by the subalgebras n+, h, n− respectively. Consider the left action of G on
the quotient variety G/N−. This action induces an action of g by vector fields on any open subset
of G/N−, in particular on its open B+ = N+ × H orbit U := B+ · [1] ' B+. This action induces an
homomorphism of Lie algebras

g→ Vect(N+ ×H)

which actually factors through the Lie subalgebra Vect(N+)⊕
(
C[N+]⊗h

)
⊂ Vect(N+×H) where

we identify h ⊂ Vect(H) with the constant right invariant vector fields. This homomorphism
induces an homomorphism of associative algebras

U(g)→ D(N+)⊗ Sym h = D(N+)⊗ C[h∗]

whereD(N+) is the algebra of differential operators onN+. This morphism turns out to have two
remarkable properties: it is injective and it induces an homomorphism Z(g)→ C[h∗].

We construct the infinite dimensional analogue of this embedding and recast it in the language
of vertex algebras. We describe in theorem 5.5.1 an homomorphism of vertex algebras

Vκc(g)→Mg ⊗ π0

whereMg should be understood as the vertex algebra analogue of an algebra of differential opera-
tors while π0 is what is called an abelian vertex algebra and should be considered as the analogue
of C[h∗] in this setting. In theorem 6.1.1 we prove that the above morphism is actually an embed-
ding, considering the analogous statement for the finite dimensional case.

The whole construction is highly non trivial and presents various technical difficulties but on
the other hand it highlights the role of the critical level in the study of affine algebras ĝκ.

We are going to see in what comes next how this construction helps us to move forward in the
proof.
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Wakimoto modules

First we are going to attack the description of Mb̃+

0,κc
.

There is a natural notion of a module over a vertex algebra. We prove in theorem 6.3.1 that
the notion of a Vκ(g) module and the notion of a ĝκ smooth module coincide. In addition, given
an homomorphism of vertex algebras V → W and a W module M, there is a canonical induced
structure of V module on M obtained pullbacking the action of W. With this properties in mind
we see that anyMg ⊗ π0 modules is automatically an ĝκc module.

The algebras Mg and π0 are easy to describe. Mg may be thought as generated by elements
aα,n, a

∗
β,m with α,β ∈ Φ+, n,m ∈ Z and commutation relations [aα,n, a

∗
β,m] = δα,βδn,−m. On

the other hand π0 can be though as generated by elements bi,n with i = 1, . . . , l and n < 0 which
commute with each other. This description allows one to easily construct a lot of modules over
these algebras.

We identify a wide class of ĝκc modules, the so called Wakimoto modules. These are obtained
considering aMg⊗π0 modules of the form L⊗N, where L is anMg module and L is a π0 module,
with the structure of Vκc(g) module and hence of a ĝκc module. The free field realization is de-
scribed by rather explicit formulas on the generators (see theorem 5.5.1), and therefore Wakimoto
modules are not so difficult to describe.

Wakimoto modules come in the picture in the following way. In proposition 6.4.1 we establish
an isomorphism of the Verma module M0,κc with a certain Wakimoto module which we callW+

0,κc
.

This identification, together with the explicit formulas typical of Wakimoto modules allow us to

compute the space of invariants Mb̃+

0,κc
.

In particular we notice that all the modules considered so far are actually modules for the
extended affine algebra ĝ ′κc := ĝκc o CL0 where L0 is the operator acting on ĝκc as −t∂t. We are

able to compute the character of the space of invariants Mb̃+

0,κc
with respect to the action of L0, as

well as the character of the invariants of the graded space
(
grM0,κc

)b̃+ . We find that they are
actually equal and therefore the inclusion

gr
(
Mb̃+

0,κc

)
↪→ (

grM0,κc

)b̃+

is actually an isomorphism.
This allows us to conclude that gr ζ(g) = Inv g∗[[t]] as remarked before and therefore to de-

scribe the center of the completed enveloping algebra as the completion of a polynomial ring in

an infinite number of variables. The definition of Wakimoto modules and the description of Mb̃+

0,κc
may be found in chapter 6.

Opers and Screening Operators

What remains to do is the identification of ζ(g) with the algebra of functions on the space of Opers.
The space of Opers is a classifying space for certain connections on the trivial LG bundle over the
formal discD = SpecC[[t]]. This space is described in the first part of chapter 8. After defining the
space of Opers we immediately see that its algebra of functions is isomorphic to a free polynomial
algebra in a countable number of variables

C[OpLG(D)] = C[vi,n]i=1,...,l;n<0

16



Notice that as commutative algebras it is obvious, by what we have done so far, that ζ(g) is
isomorphic as a C algebra to the algebra of functions on OpLG(D). Our goal is to obtain a more
canonical isomorphism, in particular we focus on constructing aDerO equivariant isomorphism.

Recall that the group of automorphisms of the formal disc AutO, and hence its Lie algebra
DerO, naturally act on the Lie algebra ĝκ, for any value. This action induces a vertex algebra
action of DerO on Vκ(g) and hence a natural action on the center ζκ(g). On the other hand the
space of Opers is defined over the disc itself and therefore carries by its very definition an action
of the group AutO and therefore its algebra of functions carries a natural DerO action. The
isomorphism we present is compatible with these actions. In the thesis we focus on the action of
DerO but it is possible to extend the result considering also the action of the group AutO, whose
action is anyway strictly connected to the action of DerO.

To proceed with the proof we introduce an auxiliary space: the spaceMOpLG(D)gen of generic
Miura Opers on the formal disc. It turns out that MOpLG(D)gen fibers over OpLG(D) and it is
actually anN+ torsor over it. Under a specific trivializationMOpLG(D)gen ' OpLG(D)×N+ we
may write

C[MOpLG(D)gen] = C[OpLG(D)]⊗ C[N+]

and

C[OpLG(D)] = C[MOpLG(D)]N+ = C[MOpLG(D)]n+

A natural way to describe the algebra C[OpLG(D)] in terms of the algebra C[MOpLG(D)gen] is
to write down the infinitesimal action of the generators ei of the Lie algebra n+. This allows us to
describe the algebra of functions on OpLG(D) as the intersection of the kernels of the operators ei
inside C[MOpLG(D)gen].

To link these construction with the vertex algebra setting we establish a DerO equivariant
isomorphism between

π0 ' C[MOpLG(D)gen]

We find that in a completely analogous way with respect to the finite dimensional case, the
center ζ(g) is mapped through the free field realization into π0:

ζ(g) ↪→ π0

Thus we embedded, in a DerO equivariant way, the center ζ(g) and the algebra C[OpLG(D)]
in the same ambient space. All we are left to do is to show that they are equal. This is done by
considering another description of the operators ei on C[MOpLG(D)gen].

In chapter 7 we introduce the so called intertwining operators Si which are ĝκc linear mor-
phisms

Si :Mg ⊗ π0 → W̃
(i)
0,0,κc

where W̃(i)
0,0,κc

is a certain ĝκc module described in the same chapter. We show that the subalgebra
Vκc(g) lies in the intersection of the kernels of these operators. In particular the center ζ(g) is
contained in the intersection of the kernels of Vi : π0 → π0 ⊂ W̃

(i)
0,0,κc

which are obtained by
restricting Si to π0.

ζ(g) ⊂
⋂
i

kerVi
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Finally thanks to the explicit description we give of all these operators we find at the end
of chapter 8 that the operators Vi coincide with the operators ei under the isomorphism π0 '
C[MOpLG(D)gen]. In particular we obtain an DerO equivariant immersion

ζ(g) ↪→ C[OpLG(D)]

To conclude the proof we use the equality gr ζ(g) = C[g∗[[t]]]g[[t]] to compute the character of
ζ(g) under the action of L0 = −t∂t ∈ DerO. We compute explicitly the character of C[OpLG(D)]
and a comparison of the two characters shows that they are actually equal, so the above inclusion
must be an isomorphism.
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Chapter 2

Preliminaries

In this first chapter we give the basic definitions, notations and results used in the rest of the thesis.
We focus on the theory of Lie algebras and on Algebraic Geometry.

2.1 Lie Algebras

Throughout the thesis the symbol g will stand for a simple finite dimensional Lie algebra over C.
Given a fixed maximal toral subalgebra h ⊂ g we consider the decomposition of g in root spaces
g = ⊕α∈Φgα, here Φ ⊂ h∗ denotes the set of roots, these spaces are one dimensional. l = dimC h
will be called the rank of g and given a basis {α1, . . . , αl} = ∆ ⊂ Φ we will denote by ei ∈ gαi a
fixed set of generators of the spaces gαi .

There exists unique elements fi ∈ g−αi and hi ∈ h such that the triple ei, hi, fi is an sl2-triple,
hi does not depend by the choice of ei but fi does. We will always The numbers aij = αj(hi) are
called the Cartan integers. The matrix (aij) is called the Cartan matrix, it is positive definite and
characterizes g. Moreover given a symmetrizable positive definite matrix one can reconstruct a
Lie algebra associated to it.

The elements ei, hi, fi are a set of generators and g is isomorphic to the free Lie algebra gener-
ated by them subjected to the following Serre Relations:

• (S1) [hi, hj] = 0

• (S2) [ei, fj] = hiδij

• (S3) [hi, ej] = aijej and [hi, fj] = −aijfj

• (S+ij) ad(ei)
−aij+1(ej) = 0

• (S+ij) ad(fi)
−aji+1(fj) = 0

This explicit description allows us to define an involution ι for such algebras: ι(ei) = fi, ι(hi) =
−hi, ι(fi) = ei.

We call Lg the Langlands dual Lie algebra it is defined as the algebra given by the transposed
Cartan matrix i.e. Laij = aji. Some further notation:
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• We will denote byω∨
i the element of h defined by the equations αj(ω∨

i ) = δij;

• We will denote by ρ∨ the element of h defined by the equations αi(ρ∨) = 1 ∀i = 1, . . . , l, we
naturally have ρ∨ =

∑
iω

∨
i .

2.1.1 Principal Gradation, exponents

We states some results concerning the exponents of a simple Lie algebra g and their relation to the
ring of invariants C[g∗]g we refer to [Kos63].

Consider the element p−1 ∈ g defined to be the sum of the generators for the lower nilpotent
subalgebra n−: p−1 =

∑
i fi.

Remark 2.1.1. There exists coefficients mi such that (
∑
imiei, 2ρ

∨, p−1) is an sl2 triple. Indeed
for every choice ofmi we have that [2ρ∨,

∑
imiei] = 2

∑
imiei so we just have to choose them in

order to have 2ρ∨ = [
∑
imiei, p−1] =

∑
imihi. This is possible since hi is a basis of h.

Definition 2.1.1. The decomposition

g =
⊕
i

gi

induced by the adjoint action of ρ∨ is called the principal gradation of g. Notice that gi is exactly
the direct sum of root spaces for roots of height i. In particular

b =
⊕
i≥0

gi =
⊕
i≥0

bi

The morphism ad(p−1) : bi+1 → bi is injective, and therefore we may find a subspace Vi ⊂ bi
such that

bi = ad(p−1)bi+1 ⊕ Vi

Definition 2.1.2. The natural numbers i such that Vi 6= 0 are called exponents of g, and dimVi is
called the multiplicity of the exponent i. Note that V0 = 0 and define

V =
⊕
i≥0

Vi ⊂ n

In addition we define
E := {d1, . . . , dl}

the set of exponents counted with multiplicity.

Finally we state the theorem linking the exponents of g to the algebra of invariants.

Theorem 2.1.1 (Kostant). The ring of invariants

C[g∗]g

is freely generated by homogeneous polynomials Pi : i = 1, . . . , l. The degree of Pi is exactly di + 1.
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2.1.2 Affine Kac-Moody algebras

We extend the definition of the affine Kac-Moody algebra in the non-simple case. Consider any
Lie algebra g and an invariant inner product κ on it. Then the following formula defines a cocycle
in H2(Lg,C)

c(X⊗ f, Y ⊗ g) = κ(X, Y)Rest=0fdg

the associated central extension in called the affine algebra ĝκ. When g is simple it will be
called affine Kac-Moody algebra.

Representations of affine Kac-Moody algebras

We will often consider representations of the affine Kac-Moody algebra ĝκ which are modules for
the extended algebra

ĝ ′κ := ĝκ o L0

where L0 is the grading operator acting on ĝκ by L0 = −t∂t. We require additionally that in these
representations the action of h⊕CL0 is semisimple with finite dimensional eigenspaces, the latter
will be also called weight spaces. We will denote weights by couples (λ, µ) where λ : h → C is a
linear functional and µ ∈ C is the value of the eigenvalue relative to −L0 = t∂t.

Note that ĝκ with the adjoint representation of ĝ ′κ is a module with the above properties (actu-
ally one should consider the subalgebra g[t, t−1]⊕ C1) its weight spaces are of the form

(ĝκ)(α,n) = gα ⊗ tn

We define the set of positive roots of ĝκ as follows

Φ̂+ = {(α,n) : α ∈ Φ+, n ≥ 0} ∪ {(−α,n) : α ∈ Φ+, n > 0} ∪ {(0, n) : n > 0}

The subspace relative to the positive roots is the Lie subalgebra n̂+ := n+ ⊕ tg[[t]].

2.2 Algebraic Geometry

As algebraic geometry is concerned we will work in the category SchC of Schemes over C, we will
give in this section an overview of all the language and the tools we will need in the thesis.

2.2.1 Schemes as functors

The natural embedding AlgopC → SchC is fully faithful, its essential image will be called the cat-
egory of affine schemes. Using the fact that every scheme admits an open cover of affine sub-
schemes one can prove a stronger version of the Yoneda Lemma:

Proposition 2.2.1. The restriction of the Yoneda Embedding SchC → Fun (SchopC ,Set) to Fun (AlgC,Set)

SchC → Fun (AlgC,Set) X 7→ (R 7→ X(R) = Hom C(SpecR, X))

is still fully faithful.
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The above proposition is true in a more general setting, making the substitution C 7→ R for a
C-algebra R. We will call a functor F : AlgC → Set representable if it is naturally isomorphic to a
scheme X ∈ SchC. In virtue of the above proposition we will make no difference between a scheme
X and its functor of points R 7→ X(R). We may also talk of functions in terms of functors.

Definition 2.2.1. Let X be a functor X : AlgC → Set. Define

C[X] :=
{
f : X→ A1

}
the set of natural transformations from X to the scheme A1. The multiplication and the addition
morphisms A1 × A1 → A1 give the structure of a C algebra to C[X]. If X is a scheme then C[X] is
obviously equal to the ring of regular functions on X.

If the scheme X is affine (i.e. isomorphic to the spectrum of a C algebra) the Yoneda Lemma
provides us with a universal Element ξX ∈ F(X). Here we are identifying with a slight abuse of
notation X with its ring of functions, the difference will be clear from the context. In this case the
isomorphism ϕ : X → F is given by the following: if f ∈ X(R) = Hom AlgC

(X, R) then ϕR(f) =
F(f)(ξX) where F(f) : F(X)→ F(R) is the morphism associated to f by functoriality.

We list a couple of useful remarks:

• The category SchC admits arbitrary fibered products. Given three schemes X, Y, Z and maps
Y → X,Z → X the functor of points associated to Y ×X Z equals the functor R 7→ Y(R)×X(R)
Z(R);

Sheaves for the flat topology

Representable functors have various nice property, the one we are interested in is the property of
being a sheaf for the flat topology. We follow [Mil17][Definition 5.65]

Definition 2.2.2. A functor F : AlgC → Set is said to be a sheaf for the flat topology if the following
axioms hold:

• (local) For all C-algebras Ri for i = 1, . . . , n the map F(R1 × · · · × Rn)→ F(R1)× · · · × F(Rn)
is an isomorphism;

• (descent) For any faithfully flat map R→ R ′ the sequence

F(R)→ F(R ′)→ F(R ′ ⊗R R ′)

is exact, i.e., the first map is the equalizer of the second couple of maps.

One can check that representable functors (coming from schemes) are sheaves for the flat topol-
ogy. Therefore when we are going to try to define geometric spaces (i.e. schemes) through functors
we are interested in functors that are sheaves for the flat topology. Fortunately there is a way to
associate to a functor a canonical flat sheaf.

Theorem 2.2.1. Let F be a functor F : AlgC → Set. Then there exists a couple (Fa, f) such that Fa is a
sheaf for the flat topology and f : F→ Fa is a morphism which satisfy the following universal property:

for every other flat sheaf G and every morphism g : F→ G there exists a unique morphism fa : Fa → G
such that the following diagram is commutative:
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F Fa

G

f

g
fa

Such a universal object must of course be unique up to unique isomorphism.

Definition 2.2.3. A subfunctor F of a functor G is said to be a fat subfunctor if for every element
x ∈ G(R) there exists a finite faithfully flat family Ri (i.e. some Ri with a faithfully flat morphism
R→ ΠiRi) such that the image of x inG(Ri) belongs to F(Ri) for each i. This is equivalent to asking
that G is the sheafification of F.

Proposition 2.2.2. Let F be a fat subfunctor of G. Then the canonical map Fa → G is an isomorphism, in
particular for any flat sheaf H

Hom(F,H) = Hom(G,H)

2.2.2 Tangent space, vector fields

We define here the notions of the tangent space.

Definition 2.2.4. Let X be a C scheme (or any functor X : AlgC → Set). Let TX be the functor of
C-algebras defined by

TX(R) := X(R[ε])

If X is a scheme of finite type TX is representable by a scheme of finite type over C. The natural
maps R→ R[ε] and (ε = 0) : R[ε]→ R define morphisms

0 : X→ TX and π : TX→ X

whose composition is the identity on X.

As an example consider X = SpecC[x1, . . . , xn]/(f1, . . . , fm) then

TX(R) = X(R[ε]) =
{
(r1 + εr

ε
1 , . . . , rnεr

ε
n) : fi(r+ εr

ε) = fi(r) + ε〈rε,∇fi(r)〉 = 0∀i
}

The functor TX results therefore representable by the affine scheme

SpecC[xi, xεi ]/(fj(x), 〈xε, fj(x)〉)

so TX effectively corresponds with the intuitive notion of tangent space.

Definition 2.2.5. Given a C scheme X (or a functor of C algebras) a vector field on X is a morphism

v : X→ TX such that π ◦ v = idX
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The set of vector fields form naturally a C vector space. If X is affine of finite type one may check
that

Vect(X) = DerC[X]

Therefore for a general scheme X of finite type the sheaf of C-vector spaces U 7→ Vect(U) has a
natural local structure of a Lie algebra which induces a structure Lie algebra on the sheaf Vect.
This sheaf naturally acts on the sheaf of sections (through the action of DerC[U]).

One may intrinsically define a ‘bracket’ product on Vect(X) for any functor X, which if X is
sufficiently well behaved gives to Vect(X) the structure of a Lie algebra. We will omit this general
construction on limit ourselves to describe the Lie algebra of Vect(X) on the specific situations we
will encounter.

Anyway we may define an action of Vect(X) on the algebra C[X] as follows. Consider a func-
tion f and a vector field v define v · f as the composition

X TX TA1 A1v Tf
d
dε

where d
dε

is the morphism defined on R points by TA1(R) 3 r + εrε 7→ rε ∈ A1(R). This
definitions coincides with the ones we gave for the finite type case.

2.2.3 Group functors and Group schemes

We are going to give here the notions and tools we will use regarding algebraic group schemes.
We will focus on group schemes defined over C.

Definition 2.2.6. A group functor over C is a functor

G : AlgC → Grp

An homomorphism of group functors is simply a natural transformation, which automatically has
to preserve the group structure.

If the underlying functor to Set is representable by a scheme G is called a group scheme. An
homomorphism of group schemes is an homomorphism of group functors, by the Yoneda lemma
it induces a morphism of the corresponding represented schemes.

All groups schemes we are interested in will be affine and algebraic (i.e. of finite type over C),
we will refer to them simply as algebraic groups. They are easily seen to be smooth.

From time to time we will encounter group schemes over C which are not of finite type, all
such groups will be anyway closely related to algebraic groups.

Definition 2.2.7. The Lie algebra of a group functor is defined to be the functor of R-algebras

g(R) := Lie(G)(R) := ker(G(R[ε])→ G(R))

It is possible to define functorial maps
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g(R)× g(R) g(R)

{∗} g(R)

R× g(R) g(R)

+

0

Which make g(R) into an R module. If the group is algebraic g(C) is a finite dimensional C vector
space and there is a natural isomorphism

g(R) = g(C)⊗C R

So g in this case is a vector space scheme.

Remark 2.2.1. To a morphism of group functors f : G → H is possible to associate a morphism
between the corresponding Lie algebras

Lie(f)(R)g(R)→ h(R) Lie(f)(R) = f(R[ε])|g(R)

This association is of course functorial.

Example 2.2.1 (vector spaces). Let V be a vector space over C. Consider the functor of C algebras

Va(R) = V ⊗C R id⊗ f =: Va(f) : Va(R1)→ Va(R2)

where f : R1 → R2 is a morphism of C algebras.
The choice of a basis (vi)i∈I for V result in a functorial isomorphism V(R) = RI so Va is actually

representable by a scheme. The functorial morphisms

Va(R)× Va(R) Va(R)

{∗} Va(R)

R× Va(R) Va(R)

+

0

defining the structure of Rmodule on V(R) induce morphisms of schemes Va×Va → Va, C→ Va
and A1 × Va → Va. A scheme equipped with those map, with the appropriate commutative
diagrams will be called a vector space scheme

Example 2.2.2 (GL(V)). Let V be a complex vector space. Define GL(V) as the group functor

GL(V)(R) := GLR(VR)

where as in the previous example VR := V ⊗C R for a C algebra R. Choosing a basis for V gives
the usual isomorphism of GL(V) with an open subscheme of An2 therefore GL(V) is actually an
algebraic group.
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It’s easy to see that the automorphisms A ∈ GL(V)(C[ε]) which are the identity at ε = 0 are
exactly those of the form

id+ εϕ ϕ ∈ EndV

for any ϕ ∈ EndV . With this expression we mean the automorphism of V ⊗ C[ε] given by

v+ εw 7→ v+ εw+ ε
(
ϕ(v) + εϕ(w)

)
This proves that Lie(GL(V))(C) = EndV , and it is not difficult to extend this result to Lie(GL(V))(R) =
End RVR.

Definition 2.2.8. By an action of a group functor (or a group scheme) G on a functor (or a scheme)
Xwe mean a map µ : G× X→ X such that the following diagrams are commutative:

G×G× X G× X

G× X X

m×id

id×µ µ

µ

∗ × X G× X

X

e×id

µ
id

wherem : G×G→ G is the multiplication map induced by the group structure.

Notice that given a C point g : ∗→ G the composition

X ∗ × X G× X X
= g×id µ

is an automorphism of Xwith inverse g−1 ∈ G(C).
Associated to a group functor acting a space on there are several classical actions. Suppose we

are given an action G× X→ X

• (Action of G(C) on C[X]) For g ∈ G(C) and f ∈ C[X] define

g · f := f ◦ g−1

where g−1 is the automorphism of X induced by g−1. Notice that on R points g · f is read as
follows

(g · f)(x) = f(g−1x) where x ∈ X(R) and g−1 ∈ G(C)→ G(R)

In particular this action of G(C) on C[X] preserves the C algebra structure.

• (Action of g(C) on C[X]) Let ξ ∈ g(C) and f ∈ C[X] consider the composition,

g× X T(G× X) TX TA1 A1Tµ Tf
d
dε

where the first map is given the inclusion g(R) × X(R) ⊂ G(R[ε]) × X(R[ε]), the second and
the first map are the Tµ and Tf respectively while the last map is ‘ d

dε
’ which on R points is

defined as r+ εrε 7→ rε.
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Define ξ · f as the composition

X ∗ × X g× X T(G× X) TX TA1 A1Tµ Tf
d
dε= −ξ×id

This induces a linear action of g(C) o C[X], which actually consists on derivations, we will
call such actions ‘actions by vector fields’. If X is a scheme and U is an open subscheme of X
the above diagram is actually well defined under the substitution X 7→ U this is essentially
due to the fact that if X ∈ U(R) and ξ ∈ g(R) ξ · x ∈ U(R[ε]). Therefore given an action of G
on X it is defined an action of g(C) by derivation on C[U] for every open subscheme U of X.

Definition 2.2.9. A representation of an algebraic group on a vector space V is an homomorphism
of group functors

G→ GL(V)

A representation naturally induces an action of G on Va. Such actions are called linear.

Remark 2.2.2. By functoriality of Lie to every representation of G on a vector space V we obtain a
linear homomorphism

Lie(G)→ EndV

In particular ifG is algebraic, we may consider the adjoint representation ofG on its Lie algebra
g (note that if g ∈ G(R) and ξ ∈ g(R) ⊂ G(R[ε])

Ad : G→ GL(g) g 7→ (ξ 7→ gξg−1)

which may be checked to be linear. By functoriality of Lie It induces a map

ad : g→ End g

one may also check that [x, y] := ad(x)(y) defines a Lie bracket on g, this is the only definition of
a bracket which is functorial (i.e. for every representation V the map g → EndV is a Lie algebra
homomorphism), see [Mil17].

2.2.4 Fixed points, quotients

Consider a given action of an group scheme G on a scheme X: µ : G× X→ X. We introduce some
spaces of invariant functions.

Definition 2.2.10. Let’s group a list of definitions

• (C[X]G) We say that f ∈ C[X] is G invariant if the following diagram is commutative:

G× X X

X A1

π2

µ

f

f

Where π2 is the projection on the second factor. Let C[X]G the set of G invariant functions. It
is a subalgebra of C[G].
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• (C[X]G(C)) Define C[X]G(C) to be the set of invariant functions for the linear action of G(C)
on C[X]

• (C[X]g) Let f ∈ C[X] be a function. We say that f is g invariant if the composition

g× X T(G× X) TX TA1 A1Tµ Tf
d
dε

is identically 0;

• (C[X]g(C)) Define the ring C[X]g(C) as the ring of invariant function for the action of g(C) on
C[X]. Since g(C) acts by derivations it is a subalgebra of C[X]

These spaces are all closely related.

Proposition 2.2.3. The following inclusions hold for any group scheme G and for every scheme X:

C[X]G ⊂ C[X]G(C)

C[X]g ⊂ C[X]g(C)

C[X]G ⊂ C[X]g

If in addition G and X are of finite type and G is connected , these inclusions are all equalities.

Proof. All the above inclusions are obvious. So assume that G and X are of finite type. Then
equality of morphisms may be checked on C points, which is exactly equivalent to say that the
first two inclusions are equalities.

Finally the equality C[X]G(C) = C[X]g(C) is a classical result of representation theory, which
actually holds for any representation: VG(C) = Vg(C).

When X is an affine schemes invariant functions are closely related to the notion of quotients.
We stick to this setting, let’s µ : G × X → X be an action of an algebraic group on an algebraic
scheme X. Given any scheme Y and a morphism f : X → Y we say that f is G invariant if the
following diagram is commutative:

G× X X

X Y

π2

µ

f

f

Definition 2.2.11. Let p be a G invariant map p : X → Y. We say that the couple (Y, p) is a
categorical quotient of X for the action of G if it is universal among all G invariant maps. By
universal we mean that give any other G-invariant map f : X→ Z there exists a unique morphism
F : Y → Z such that the following diagram is commutative

X Y

Z

p

F
f

28



There is another notion of quotient, which involves the notion of invariant functions.

Definition 2.2.12. Let p be a G invariant map p : X→ Y. We say that the couple (Y, p) is geometric
quotient if the following properties are satisfied:

• p is surjective (on C points) and the natural map

G× X→ X×Y X

is surjective (on C points). Equivalently the C fiber of p consists of non-empty G orbits;

• p is submersive, which is to say that U ⊂ Y is open if and only if p−1(U) is open in X;

• The map of sheaves p# : OY → p∗OX is injective and its image is exactly the sheaf of G
invariant functions. That is to sayOY(U) = OX(p−1(U))G (note thatG actually acts on every
open subset of the form p−1(U)).

Given an arbitrary action of G on X both the categorical and the geometric quotient must not
necessarily exist.

The following proposition will be very useful for us and give a couple of criterions for the
existence of quotients. Here both G and X are assumed to be algebraic over C (i.e. of finite type).

Proposition 2.2.4. If the geometric quotient exists it is also a categorical quotient.

The following may be found in [MFK94][Proposition 0.2]

Theorem 2.2.2. Suppose X and Y are normal irreducible noetherian C schemes of finite type and let p :
X→ Y be a G invariant dominant morphism. Suppose in addition that the maps

p : X→ Y G× X→ X×Y X

are surjective (on C points). Then the couple (Y, p) is a geometric quotient for the action of G on X.

2.2.5 The formal disc

We give here an overview of what we mean by formal disc and all the constructions relative to it.

Definition 2.2.13. We call D = SpecC[[t]] the formal disc over C, Dn = Spec (C[t]/(tn)) the n-th
formal disc over C

We have natural closed immersions Dn → Dm for m ≥ n and Dn → D. These immersions
form a cone over D. Actually it turns D is the colimit (in the category of functors Fun(AlgC,Set),
this is simply becauseC[[t]] is the projective limit in the category of C-algebras of the rings C[t]/(tn).
Since it is a scheme and the category SchC is a full subcategory of Fun(AlgC,Set) it turns out that
D is also the colimit of Dn in the category SchC.

The same definitions work over an arbitrary C-algebra R.

Definition 2.2.14. We call DR = SpecR[[t]] the formal disc over R and (Dn)R = SpecR[t]/(tn)
the n-th formal disc over R. As in the case R = C, DR is the colimit of (Dn)R in the category
Fun(AlgR,Set) and hence it is also the colimit of (Dn)R in the category of R-schemes
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In virtue of the interpretation of D and DR as a limit of the n-th formal discs, which, being
finitely generated R-algebras, satisfy nicer properties, we will be interested in ‘continuous’ objects
on D, obtained from a limit of objects on Dn. This will be made more precise every time we
introduce a new object.

We call the ‘0 point’ ofDR as the R point defined by the morphism of R algebras ev0 : R[[t]]→ R
which sends t 7→ 0. Given a map of schemesϕ : DR → X of R-schemes we will callϕ(0) : SpecR→
X the map obtained by restricting ϕ to the 0 point SpecR→ DR.

The following lemma will be very useful.

Lemma 2.2.1. Let X be an R-scheme andU an open subscheme of X. Then there is a natural correspondence

U(R[[t]])←→ {ϕ ∈ X(R[[t]]) : ϕ(0) ∈ U(R)}

Proof. Since morphism of R-schemes ϕ : SpecR[[t]] → U are in natural correspondence with mor-
phisms ϕ : SpecR[[t]] → X whose image is contained in U we have to show that the image of a
morphism ϕ : SpecR[[t]] → X is contained in U if and only if the image of ϕ(0) is contained in U.
The ‘only if’ part is obvious.

So consider a morphism ϕ : SpecR[[t]] → X such that ϕ(0) has image in U. We can restrict
ourselves to check that the closed points are mapped in U since if any point is mapped in X \ U
then its closure is mapped in X\U. Let p ∈ SpecR[[t]] be a closed point. If t ∈ p then p corresponds
to a closed point of SpecR so its mapped in U by hypothesis. Suppose by contradiction that
there is a maximal ideal p such that t is not in p then by maximality there exists r(t) ∈ R[[t]] and
x ∈ p such that 1 = x + r(t)t so x = 1 − r(t)t but this is an invertible element of R[[t]] hence the
contradiction.

We introduce now the continuous cotangent module over the formal discDR over R. Consider
first the case of the n-th discs, it is easy to check that

Ω1(Dn)R/R = R[t]/(tn−1)dt

this is also a module over R[[t]] and it is natural to define the continuous cotangent module over
R[[t]] as follows

Definition 2.2.15. The modules Ω1(Dn)R/R form a projective (???) system of R[[t]] modules. We
define

Ω1,contDR/R
= lim←−Ω1(Dn)R/R

This definition is independent of a choice of a coordinate t. And given an isomorphism DR =
SpecR[[t]] we have a natural isomorphism

Ω1,contDR/R
= R[[t]]dt

thereforeΩ1,contDR/R
is a free R[[t]]-module of rank 1, for instance it is self dual.

The group AutO

We will describe in this section the group functorAutO. We will see that considering it as a functor
will give us some useful insights on its Lie algebra that do not appear if we naively consider only
its C points.
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Definition 2.2.16. Let AutO be the group functor defined from AlgC to Grp as

AutO : AlgC → Grp AutO(R) := Aut R,cont(R[[t]])

Where by a continuous automorphism we mean an automorphism which is continuous for the
topology generated by the ideals (tn).

Remark 2.2.3. Every such automorphism is determined by its image ρ(t). It is straightforward
that ρ(t) =

∑
n≥0 rit

i defines an automorphism if and only if r0 is nilpotent and r1 is invertible.

We have therefore a natural isomorphism

AutO(R) =
{
ρ(t) =

∑
n≥0

rit
i : r0 nilpotent and r1 invertible

}
Note that the group structure under this isomorphism is read

σ · ρ(t) = ρ(σ(t))

Because of the nilpotency condition the group AutO is not representable by a scheme, but it is
actually an ind-scheme (i.e. a direct limit of schemes in the category of functors). Indeed the
subgroups

AutOn(R) :=
{
ρ(t) =

∑
n≥0

rit
i : rn0 = 0 and r1 invertible

}
are representable by C[xi, x−11 ]i≥0/(x

n
o ) and their direct limit is exactly AutO.

Definition 2.2.17. Let DerO be the Lie algebra functor of AutO. Defined as

DerO(R) := ker(AutO(R[ε])→ AutO(R))

Therefore an element x ∈ DerO(R) is expressed ρε(t) = t + ερ(t) for an arbitrary ρ(t) =∑
i≥0 rit

i. Indeed the only conditions for ρε(t) to belong in AutO(R[ε]) are that εr0 is nilpotent
which is always true since ε2 = 0 and that 1 + εr1 is invertible, which is true for any r1 ∈ R (the
inverse is 1− εr1.

Proposition 2.2.5. DerO is representable and isomorphic to C[xi]. The bracket on DerO is expressed as
follows:

[t+ εr(t), t+ εs(t)] = t+ ε
(
r(t)s ′(t) − r ′(t)s(t)

)
Proof. The first part of the statement follows from the above discussion while the second is a
straightforward computation following the definition of the bracket for a general group func-
tor.

Derivatives

We are now going to define certain derivatives. We will often be interested in R[[t]] points of groups
and we wish to make sense of the derivative along t of such points in terms of the Lie algebras.

Let (t + ε) : SpecR[[t]][ε]→ SpecR[[t]] the R-morphism defined by the morphism of R algebra
which sends t 7→ t+ ε.Then the composition
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SpecR[[t]] SpecR[[t]][ε] SpecR[[t]]ε=0 t7→t+ε
is the identity.

Definition 2.2.18. Let G be an algebraic group. And consider a morphism g(t) : DR → G or
equivalently an element g ∈ G(R[[t]]). We define its derivative with respect to t as the element

dg · g−1 := g(t+ ε)g−1(t)

Since g(t+ ε)ε=0 = g(t) this morphism defines an element of g(R[[t]]).

Consider now an element x(t) ∈ g(R[[t]]) ⊂ G(R[[t]][ε0]). We wish to describe its derivative
with respect to t in terms of the ordinary derivative on g⊗ R[[t]]

Proposition 2.2.6. Consider now an element x(t) ∈ g(R[[t]]) ⊂ G(R[[t]][ε0]). Then the element dx(t) ·
x−1(t) ∈ g(R[[t]][ε]) equals to

ε∂tx(t)

Proof. It is easily computed for GLn and since we are considering algebraic groups over C it is
sufficient to prove the general case.
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Chapter 3

Vertex Algebras

In this section we introduce vertex algebras and briefly state the basic results of the theory, a more
detailed discussion can be found in [Fre07] and in [Kac98]. Next we are going to define a vertex
algebra closely related to ĝk we will call it Vk(g). We will extensively study this algebra and see
for instance how the formalism of vertex algebras allows us to produce a large number of central
elements of the completed enveloping algebra.

3.1 Formal calculus

We briefly introduce the language of formal calculus. It involves computations on series living in
spaces such as C[[z±1, w±1]], the space of formal power series a coefficients in C in the variables
z,w.

More generally given a vector space U we consider the vector space U[[z±1i ]]i where i runs
from 1 to a certain natural number n. This is certainly a vector space, in the case in which U is an
algebra U[[z±1i ]]i won’t be an algebra with the usual multiplication of series since in the formulas
infinite sums appear. If U is an algebra we can multiply series in different variables and in any
case is possible multiply series with Laurent polynomials so U[[z±1i ]]i is a C[z±1i ]i module. The
partial derivatives ∂zi are also well defined.

Our standard notation for a series A(z1, . . . , zn) ∈ U[[z±1i ]] will be

A(z1, . . . , zn) =
∑

Aj1,...,jnz
−j1−1
1 . . . z−jn−1n

We define here the linear map
∫
(·dzi) := Reszi=0(·dzi) : U[[z

±1
j ]]→ U[[z±1j , ẑi

±1]]∫
A(z1, . . . , zn)dzi :=

∑
Aj1,...,ji−1,0,ji+1,...,jnz

−j1−1
1 . . . z

−ji−1−1
i−1 z

−ji+1−1
i+1 . . . z−jn−1n

3.1.1 The formal delta function

We introduce now a very important power series: δ(z−w) ∈ C[[z±1, w±1]]. We define
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δ(z−w) :=
∑
n∈Z

znw−n−1

here z−w is just a notation. It satisfies the following basic properties:

• For any seriesA(z) ∈ U[[z±1]] the productA(z)δ(z−w) makes sense inU[[z±1, w±1]] and the
following equation holds:

A(z)δ(z−w) = A(w)δ(z−w)

• The partial derivatives satisfy ∂zδ(z−w) = −∂wδ(z−w)

• The formal delta function has some nice behavior with respect to the polynomials (z −w)n.
In particular we have that (z − w)δ(z − w) = 0, (z − w)∂n+1w δ(z − w) = (n + 1)∂nwδ(z − w)
and therefore (z−w)n∂nwδ(z−w) = n!δ(z−w)

• Let A(z) be any formal series in U[[z±1]]. Then A(z)δ(z − w) is a well defined series in
U[[z±1, w±1]] and ∫

A(z)δ(z−w)dz = A(w)

The following proposition holds and will be crucial in the next paragraphs.

Proposition 3.1.1. The kernel of the multiplication by (z−w)N in U[[z±1, w±1]] is the U[[w±1]] span of
δ(z−w), . . . , ∂N−1

w δ(z−w). In addition the coefficients γi(w) in the expression

x =

N−1∑
i=0

γi(w)∂
i
wδ(z−w)

for an element x in this kernel are unique.

Proof. We prove the firs part of the statement by induction on N. For N = 1 consider A(z,w) =∑
n,mAn,mz

−n−1w−n−1 which is killed by z−w. Then the following condition on the coefficients
holds: An+1,m − An,m+1 = 0. We deduce that the coefficients are constant on the diagonals:
n + m = i + j implies that An,m = Ai,j. Let Bk := An,m for any choice of n + m = k and let
B(w) :=

∑
Bkw

−k−1 then a straightforward computation shows that

A(z,w) = B(w)δ(z−w)

Now suppose that we have A(z,w) ∈ ker(·(z−w)N+1) by the inductive hypothesis we have

(z−w)A(z,w) =

N−1∑
i=0

γi(w)∂
i
wδ(z−w)

By the properties cited above we therefore have

(z−w)
(
A(z,w) −

N−1∑
i=0

1

i+ 1
γi(w)∂

i+1
w δ(z−w)

)
= 0
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Finally by the first step of the induction there exists a γ(w) ∈ U[[w±1]] such that

A(z,w) = γ(w)δ(z−w) +

N∑
i=1

1

i
γi−1(w)∂

i
wδ(z−w)

To prove uniqueness notice that given two series B(w), C(w) we have

B(w)δ(z−w) = C(w)δ(z−w) =⇒ B(w) = C(w)

Therefore if
∑N−1
i=0 γi(w)∂

i
wδ(z−w) =

∑N−1
i=0 γ

′
i(w)∂

i
wδ(z−w) multiplying by (z−w)N−1 we get

γN−1(w) = γN−1(w)
′ and then we may proceed by induction.

3.1.2 Fields

We now focus on the case in which U = EndV for another vector space V , we study a particular
class of power series which are called fields.

Definition 3.1.1 (Fields). A series A(z) ∈ EndV[[z±1]] is said to be a field if for every v ∈ V the
evaluation of A(z) on v is a Laurent series:

A(z)v =
∑
n

An(v)z
−n−1 ∈ V((z)) equivalently Anv = 0 for n� 0

If V is a Z graded vector space V = ⊕n∈ZVn we have the usual notions of homogeneous
elements of V as well as homogeneous elements of EndV . ϕ ∈ EndV is said to homogeneous
of degree m if ϕ(Vn) ⊆ Vn+m. A formal series A(z) =

∑
Anz

−n−1 is said to be of conformal
dimensionm ifAn is homogeneous of degreem−n−1 for every n ∈ Z. Note that if the gradation
on V is bounded from below then any conformal series is automatically a field.

Remark 3.1.1. If A(z) is a field of conformal dimension m then ∂zA(z) is a field of conformal
dimensionm+ 1. More generally ∂nzA(z) has conformal dimensionm+ n.

Definition 3.1.2 (Normally ordered product). Given two fieldsA(z), B(z) we define their normally
ordered product as

: A(z)B(z) : := A(z)+B(z) + B(z)A(z)−

where A(z)+ stands for the nonnegative part (in the variable z) of A(z) while A(z)− stands for the
negative part.

Even if in the computation of the coefficients appear infinite sums of endomorphism, it is easy
to check that they converge in an algebraic sense: for any v ∈ V the evaluation of the above
series involves only finite sums. So the normally ordered product is a well defined element of
EndV[[z±1]] and it’s not hard to check that it is actually a field.

We define the normally ordered product of multiple series from right to left:

: A(z)B(z)C(z) : :=: A(z)(: B(z)C(z) :) :

This definition appears to be a little arbitrary, but we will shortly see that it arises quite natu-
rally in the context of vertex algebras.
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3.2 Vertex Algebras: definition and basic properties

We start giving a definition about fields.

Definition 3.2.1 (Local Fields). Two fields A(z), B(z) ∈ EndV[[z±1]] are said to be mutually local
if there exist a large enough natural number N such that

(z−w)N[A(z), B(w)] = 0

Definition 3.2.2 (Vertex Algebra). A vertex algebra is a vector space V equipped with the follow-
ing additional datum:

1. A vector |0〉 ∈ V (the vacuum vector)

2. An endomorphism T : V → V (the translation operator)

3. A linear map Y(·, z) : V → EndV[[z±1]] with image contained in the subspace of fields

A ∈ V 7→ Y(A, z) =
∑
n∈Z

Anz
−n−1

The field Y(A, z) will be called the vertex operator associated with A while the endomorp-
shisms An will be called the Fourier coefficients of the vertex operator.

This datum should also satisfy the following axioms:

1. Y(|0〉, z) = idV

2. Y(A, z)|0〉 ∈ A+ zV[[z]]

3. T |0〉 = 0

4. [T, Y(A, z)] = ∂zY(A, z) or equivalently [T,An] = −nAn−1

5. (Locality) For any two vectors A,B ∈ V the associated vertex operators Y(A, z), Y(B, z) are
mutually local fields

The definition looks a little bit cumbersome but we will shortly see how the vertex operators
encapsulate a lot of information about the commutation relations of the Fourier coefficients in a
very compact way.

Notice that the axioms for a vertex algebra make sense for any module V over a commutative
ring A. We will not pursue this point of view too deeply, even if it will come in handy from time
to time to consider vertex algebras over commutative rings such as C[x].

Most of the vertex algebras we will encounter have a natural Z grading. We therefore give here
the definition of what a Z-graded vertex algebra is.

Definition 3.2.3. A vertex algebra V is said to be Z-graded (or Z+ graded if the gradation is con-
centrated in positive degree). If the vector space V is Z graded and so it admits a decomposition
V = ⊕n∈ZVn and in addition:

1. The vacuum vector |0〉 has degree 0;

36



2. The translation operator T has degree 1;

3. For any A ∈ V homogeneous of degree n (i.e. A ∈ Vn) the field Y(A, z) =
∑
mAmz

−m−1 has
conformal dimension n, that is to say

degAm = n−m− 1

Because of this shifting we will sometimes adopt the following notation: if A ∈ Vn we will
write Y(A, z) =

∑
nAmz

−m−n so that degAm = −m.

Now that we know what a vertex algebra is we define some categorical notions.

Definition 3.2.4. We list some definitions concerning morphism, direct sums and tensor products.

• A morphism of vertex algebras between two vertex algebras (V1, |0〉1, T1, Y1), (V2, |0〉2, T2, Y2)
is a linear map ϕ : V1 → V2 that preserves the structures. In particular we require that
ϕ(|0〉1) = |0〉2, that ϕ ◦ T1 = T2 ◦ ϕ, and that ϕ(A)nϕ(B) = ϕ(AnB) for all n ∈ Z. This last
condition may be rephrased as follows:

ϕ ◦ Y(A, z) = Y(ϕ(A), z) ◦ϕ

This gives us the notion of a category.

• The kernel and the image of a morphism of vertex algebras are defined as the corresponding
vector spaces, they carry natural structures of vertex algebras;

• A vertex subalgebraW of V is a subspace which contains |0〉, which is stable under the action
of T and for which for any A,B ∈ W the elements AnB are still in W. Equivalently it is the
image of an injective morphismW → V ;

• Given two vertex algebras V1, V2 their direct sum is naturally defined as V1 ⊕ V2 as a vector
space, |0〉 = |0〉1 + |0〉2, T = T1 + T2 and Y = Y1 + Y2. This may be checked to be a product in
the category of vertex algebras;

• Given two vertex algebras V1, V2 their tensor product is defined as follows. As a vector space
it is V1⊗V2, |0〉 = |0〉1⊗ |0〉2, T = T1⊗ id+ id⊗T2 and finally Y(A⊗B, z) := Y(A, z)⊗Y(B, z).
This defines the structure of a vertex algebra and it may be checked that is the coproduct in
the category of vertex algebras;

We will give other notions and constructions like the one of ideal and quotient after we have
developed a little further the theory.

As an example we will focus for a brief moment on commutative vertex algebras, we will see
that the category of commutative vertex algebras is equivalent to the category of commutative
algebras equipped with a derivation.

Definition 3.2.5. A vertex algebra V is said to be commutative or abelian if for any A,B ∈ V we
have [An, Bm] = 0 for every n,m, or equivalently

[Y(A, z), Y(B,w)] = 0

Another characterization is the following.

37



Proposition 3.2.1. A vertex algebra V is commutative if and only if for any A ∈ V we have

Y(A, z) ∈ EndV[[z]]
Proof. If for anyA ∈ V the condition Y(A, z) ∈ EndV[[z]] is satisfied we obtain that [Y(A, z), Y(B,w)] ∈
EndV[[z,w]] which by the locality axiom is killed by (z − w)N for a sufficiently large N. It’s not
hard to see that in the space V [[z,w]] the multiplication by (z − w)N is injective, and therefore
[Y(A, z), Y(B,w)] must be 0. So V is commutative.

On the other hand assume that V is commutative. Then applying the vacuum vector to the
equation Y(A, z)Y(B,w) = Y(B,w)Y(A, z) we obtain

Y(A, z)(B+wV[[w]]) = Y(B,w)(A+ zV[[z]])

Since the series are equal and the one on left hand side has only non negative powers of w while
the one on the right hand side has only non negative powers of z they must belong to V [[z,w]].
In particular the coefficients in Y(A, z)B polar in z are 0, that is to say that AnB = 0 for any
B ∈ V and for any n ≥ 0, but this is another way to say that An = 0 for n ≥ 0 which implies
Y(A, z) ∈ EndV[[z]].

Now consider a commutative algebra V (with unity) equipped with a derivation T . One can
define a structure of vertex algebra as follows: as a vector space we take V , for the vacuum vector
we take the unity 1, while we consider the derivation T as the translation operator. Finally we
define the vertex operators as

Y(A, z) :=
∑
n≥0

1

n!
mult(TnA)zn

where mult(TnA) stands for the endomorphism given by the multiplication by TnA. It is a
straightforward to check that this datum satisfy the axioms of a vertex algebra, which of course i
commutative.

One the other hand consider a commutative vertex algebra V . Define a bilinear product on V
by

A · B := A−1B

Since V is commutative we have AB = A−1B = A−1B−1|0〉 = B−1A−1|0〉 = B−1A = BA so this
product is symmetric (and associative) and it is of course bilinear since A−1 is linear as well as the
association A 7→ A−1. Taking |0〉 as the unity we obtain a commutative algebra.

One may check that the translation operator is a derivation with respect to this product and
that the vertex operators are of the form Y(A, z) =

∑
1
n! (T

nA)−1z
n which is the same formula that

we used to define the structure of a vertex algebra on a commutative algebra.
The following proposition holds:

Proposition 3.2.2. The above construction defines an equivalence between the category of commutative
vertex algebras and the category of commutative unital algebras equipped with a derivation.

Given an arbitrary vertex algebra (not necessarily commutative) we can still define what its
center is.

Definition 3.2.6. Let V be a vertex algebra. We define its center ζ(V) as the following subspace

ζ(V) :=
{
A ∈ V : [Y(A, z), Y(B,w)] = 0 for all B ∈ V

}
We will check that it is an abelian vertex subalgebra of V after we have developed some of the

theory.
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3.2.1 First properties of Vertex Algebras

We are going to give here an outlook of some of the basic properties of vertex algebras. We will
follow [Fre07], omitting some of the proofs.

We begin with a simple but very useful fact.

Proposition 3.2.3. Let V be a vertex algebra and A ∈ V . Then

Y(A, z)|0〉 = ezTA =
∑
n≥0

zn

n!
TnA

Proof. By the translation axiom we have that [T, Y(A, z)] = ∂zY(A, z) in particular, since T |0〉 = 0
we obtain

TY(A, z)|0〉 = [T, Y(A, z)]|0〉 = ∂z(Y(A, z)|0〉)

This is a differential equation for Y(A, z)|0〉. Since we know that the constant term of Y(A, z)|0〉 is
A, we can find recursively using the above equation all the other coefficients and a straightforward
computation shows that they are exactly the ones of ezTA.

Lemma 3.2.1 (Translation). In any vertex algebra we have

ewTY(A, z)e−wT = Y(A, z+w)

where in the right hand side negative powers of Z +w are expanded assuming that w/z is small, that is to
say, in positive powes of w/z.

Proof. It is an easy computation to prove that

ewTY(A, z)e−wT =
∑
n≥0

(ad T)n
(
Y(A, z)

)wn
n!

=
∑
n≥0

∂nz
(
Y(A, z)

)wn
n!

And this is just the formal Taylor expansion of Y(A, z+w) in positive powers of w.

This lemma states that the exponentiation of T gives us the translation operator z 7→ z+w.

Proposition 3.2.4 (Skew Symmetry). In any vertex algebra the following identity holds:

Y(A, z)B = ezTY(B,−z)A

Proof. By locality we know that there exists an N such that

(z−w)NY(A, z)Y(B,w)|0〉 = (z−w)NY(B,w)Y(A, z)|0〉

and this is actually an equality in V[[z,w]]. We compute this expression as follows using the trans-
lation property we just proved.

(z−w)NY(A, z)ewTB = (z−w)NY(B,w)ezTA

(z−w)NY(A, z)ewTB = (z−w)NezTY(B,w− z)A

zNY(A, z)B = zNezTY(B,−z)A

Y(A, z)B = ezTY(B,−z)A
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We justify the above calculations. The left hand side of the second row, as in the translation propo-
sition must be understood as expanded in positive powers of z/w. By comparison with the expres-
sion on the right hand side we find that actually only positive powers of w appear and therefore
the factor (z−w)N must cancel out all negative powers of (z−w) in Y(B,w− z)A. This allows us
to set w = 0 and the proof is concluded.

As an application of skew symmetry we are now able to state a consistent definition of an ideal
in a vertex algebra.

Definition 3.2.7 (Ideals). A subspace I of a vertex algebra V is called an deal if it is preserved by
the action of T and if for every A ∈ I, every B ∈ V and every n ∈ Z the element AnB still belongs
to I. Skew symmetry tells us that ideals are actually two sided (i.e. if A ∈ I, B ∈ V,n ∈ Z we have
also BnA ∈ I). Indeed by skew symmetry we have Y(B, z)A = ezTY(A,−z)B ∈ I((z)). This allows
us to put a natural structure of vertex algebra on the quotient space V/I.

3.2.2 More on Locality

We review in this section the locality axiom, restating it in another fashion. This point of view al-
lows us to state another fundamental property of vertex algebra which is called associativity. This
property will lead to the crucial basic feature of vertex algebras: the operator product expansion
(OPE).

Given a vector space V the vector space of formal series V [[z±1, w±1]] contains various notable
subspaces. The firs one is the subspace of regular series, which do not contain negative powers
of z and w: V[[z,w]]. The next two spaces we are interested in are V((z))((w)) and V((w))((z)) of
series with negative powers of w (resp. z) bounded from below, their intersection is the space of
series with negative powers bounded from below for both z and w: the space V [[z,w]][z−1, w−1].

Consider for a moment the case in which V = C so the spaces C((z))((w)) and C((w))((z)) are
actually fields, and the ring C[[z,w]][z−1, w−1] is contained in both of them. In particular since
z−w is invertible in both these fields we obtain two embeddings:

C((z))((w))

C[[z,w]][z−1, w−1, (z−w)−1]

C((w))((z))

They are different maps, viewing the two fields contianed in the same vector space C[[z±1, w±1]].
In particular the upper embedding amounts to expanding (z − w)−1 in positive powers of w/z
while, the lower one corresponds to the expansion of (z−w)−1 in positive powers of z/w.

We have analogous embeddings in the case of V [[z,w]][z−1, w−1, (z − w)−1] which is a local-
ization of V[[z,w]] viewed as a C[z±1, w±1] module.

Now lets turn back to the situation of vertex algebra and lets focus on the locality axiom. Pick
three vectors A,B,C. By locality there exists a natural number N such that
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(z−w)NY(A, z)Y(B,w)C = (z−w)NY(B,w)Y(A, z)C

The left hand side belongs to the space V((z))((w)) while the right hand side of the equation lies
in V((w))((z)), being equal they must belong to the intersection of this spaces: V [[z,w]][z−1, w−1].
This leads to the following reformulation of the locality axiom.

Proposition 3.2.5. In any vertex algebraV for any triple of vectorsA,B,C ∈ V the expressions Y(A, z)Y(B,w)C
and Y(B,w)Y(A, z)C are expression of one same element in V[[z,w]][z−1, w−1, (z − w)−1] in the spaces
V((z))((w)) and V((w))((z)) respectively.

Proof. Since (z − w)NY(A, z)Y(B,w)C ∈ V [[z,w]][z±1, w±1] the element Y(A, z)Y(B,w)C must
be in the image of the embedding V [[z,w]][z−1, w−1, (z − w)−1] → V((z))((w)), the analogous
statement is true for Y(B,w)Y(A, z)C. Using the equality above, and reading it in the space
V [[z,w]][z−1, w−1, (z−w)−1] where we can divide by z−wwe conclude the proof.‘

3.2.3 Associativity

We saw in the previous section that the locality axiom may be rephrased as an equality of the
elements Y(A, z)Y(B,w)C and Y(B,w)Y(A, z)C in the space V [[z,w]][z−1, w−1, (z − w)−1] which
embeds in two different ways in V((z))((w)) and V((w))((z)). There is a third natural space in
which we can embed V [[z,w]][z−1, w−1, (z−w)−1] that is V((w))((z−w)).

The following proposition holds.

Theorem 3.2.1 (Associativity). Consider a vertex algebra V and three vectors A,B,C ∈ V . Then the
elements

Y(A, z)Y(B,w)C Y(B,w)Y(A, z)C Y(Y(A, z−w)B,w)C

are expansions of the same unique element in V[[z,w]][z−1, w−1, (z − w)−1] in the corresponding spaces
V((z))((w)), V((w))((z)), V((w))((z−w)).

Here Y(Y(A, z−w)B,w)C stands for the series∑
n

Y(AnB,w)C
1

(z−w)n+1

Proof. See [Fre07], theorem 2.3.3.

It is useful to think the associativity property as an equality

Y(A, z)Y(B,w) =
∑
n

Y(AnB,w)(z−w)
−n−1 (3.1)

This is very convenient since relates a product of two vertex operators with a linear combina-
tion of other veretx operators but we have to be careful. Appliying both sides to a vector C we do
obtain the convergence of the series but they still are not exactly equal: they are expansion of the
same element of V [[z,w]][z−1, w−1, (z−w)−1]. This equality, with the above understanding in the
following way, is called the operator product expansion or OPE for short.

We are now ready to see some of the most important corollaries of associativity which are some
of the most essential features of vertex algebras. We start with a technical lemma.
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Lemma 3.2.2. Let ϕ(z), ψ(w) be two fields on the same space. Then the following are equivalent:

1.

[ϕ(z), ψ(w)] =

N−1∑
i=0

1

i!
γi(w)∂

i
wδ(z−w)

2.

ϕ(z)ψ(w) =

N−1∑
i=1

γi(w)

(
1

(z−w)i+1

)
|z|>|w|

+ : ϕ(z)ψ(w) : and

ψ(w)ϕ(z) =

N−1∑
i=1

γi(w)

(
1

(z−w)i+1

)
|w|>|z|

+ : ϕ(z)ψ(w) :

Where by ( 1
(z−w)i+1

)|z|>|w| we mean its expansion in positive powers of w/z.

Proof. This is a simple computation. A detailed proof may be found in [Fre07], lemma 2.3.4.

Now our vertex operators satisfy the first condition of the lemma, being mutually local, and
moreover thanks to the OPE formula we are able to compute the polar coefficients in (z − w) of
Y(A, z)Y(B,w) we obtain the following theorem.

Theorem 3.2.2. Given two vectors A,B in a vertex algebra V , the commutation relation of their vertex
operators may be written as follows:

[Y(A, z), Y(B,w)] =
∑
n≥0

1

n!
Y(AnB,w)∂

n
wδ(z−w) (3.2)

While for any couple of vectors A,B and any number n ∈ Z we have

Y(AnB, z) =
1

(−n− 1)!
: ∂−n−1z Y(A, z) · Y(B, z) : if n < 0 (3.3)

Y(AnB, z) =

∫
(w− z)n[Y(A,w), Y(B, z)]dw if n ≥ 0 (3.4)

Proof. It can be found in [Fre07] section 2.3.4 ‘corollaries of associativity’.

Keeping in mind the first part of the theorem we will rewrite the OPE formula as follows:

Y(A, z)Y(B,w) ∼
∑
n≥0

Y(AnB,w)

(z−w)n+1

This will be a shorter notation to keep in mind that the commutation relations between the two
fields Y(A, z) and Y(B,w) is encoded in the polar part (i.e. with negative powers of z −w) on the
right hand side.

We are now able to see how normally ordered product was not an ‘ad hoc’ definition but it
arises quite naturally in the contex of vertex algebras. We obtain also the following useful corol-
laries.
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Corollary 3.2.1. The following hold

1. For any A ∈ V we have
Y(TA, z) = ∂zY(A, z)

2. For anym-tuple of vectors A1, . . . , Am and negative numbers n1, . . . , nm we have

Y(A1n1 . . . A
m
nm

|0〉, z) = 1

(−n1 − 1)!
. . .

1

(−nm − 1)!
: ∂−n1−1z Y(A1, z) · · · · · ∂−nm−1

z Y(Am, z)

3. The span of the Fourier coefficients An ∈ EndV is a Lie subalgebra of EndV , the bracket is given by
the followig formula:

[An, Bm] =
∑
k≥0

(
n

k

)
(AkB)n+m−k

Where we use the enlarged definition of binomial which allows n to be negative:(
n

k

)
:=
n(n− 1) . . . (n− k+ 1)

k!
if k > 0;

(
n

0

)
= 1

Proof. Part 1 follows from the second statement of theorem 3.2.2 applied considering B = |0〉 and
n = −2 and finally noticing that A−2|0〉 = TA, this is easy since TA = TA−1|0〉 = [T,A−1]|0〉 =
A−2|0〉. Part 2 is an simply an iterative application of the second part of theorem 3.2.2. While the
third statement is follows from expanding the terms in formula 3.2.

We are also now ready to prove that the center of a vertex algebra is actually a subalgebra.

Corollary 3.2.2. The following equality holds:

ζ(V) =
{
A ∈ V : AnB = 0 for all n ≥ 0 and B ∈ V

}
In particular Given a vertex algebra V , its center ζ(V) is a subalgebra of V (which is of course abelian).

Proof. Consider formula 3.2. We have already proved in proposition 3.1.1 that the formal series
∂iwδ(z − w) are V [[w±1]] linearly independent. From this we deduce that [Y(A, z), Y(B,w)] = 0
if and only if Y(AnB, z) = 0 for all n ≥ 0. Finally we remark that the map Y is injective, since
(Y(A, z)|0〉)z=0 = A. So Y(AnB, z) = 0 if and only if AnB = 0, this proves the first part of the
corollary.

Now to see that ζ(V) is a vertex subalgebra of V we start by remarking that since Y(|0〉, z) = idV
we certainly have |0〉 ∈ ζ(V). Moreover since Y(TA, z) = ∂zY(A, z) it easily follows that ζ(V) is
invariant under the action of T .

Notice that the condition AnB = 0 for all B ∈ V and for all n ≥ 0 is equivalent to ask that
Y(A, z) ∈ EndV[[z]]. Finally we have to check that ifA and B are central so it isAnB for any n ∈ Z.
This is certainly true for n ≥ 0 since AnB = 0 by hypothesis. For n < 0 we use the second part
theorem 3.2.2.

Y(AnB, z) =
1

(−n− 1)!
: ∂−n−1z Y(A, z) · Y(B, z) :

Since both series are regular (without polar parts in z) we have

: ∂−n−1z Y(A, z) · Y(B, z) :=
(
∂−n−1z Y(A, z)

)
Y(B, z) ∈ EndV[[z]]

and therefore Y(AnB, z) ∈ EndV[[z]] so AnB is central as well.
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It is also possible to define the centralizer of an element S.

Definition 3.2.8. Let S ∈ V . Define the centralizer of S in V as the subspace

Z(S) :=
{
A ∈ V : [Y(A, z), Y(S,w)] = 0

}
=
{
A ∈ V : AnS = 0 for all n ≥ 0

}
=
{
A ∈ V : Y(A, z)S ∈ V [[z]]

}
It is a vertex subalgebra of V .

Proof. The equalities above, as in the case of ζ(V), easily follow from theorem 3.2.2. Since it is quite
clear that |0〉 ∈ Z(S) and that Z(S) is invariant under the action of T , to prove that Z(S) is a vertex
subalgebra of V it suffices to consider two elements A,B ∈ Z(S) and show that for any k ∈ Z the
product AkB ∈ Z(S). Using theorem 3.2.2 we see that for k < 0

Y(AkB, z)S =
1

(−k− 1)!
: ∂−k−1z Y(A, z) · Y(B,w) : S

=
1

(−k− 1)!

(
∂−k−1z Y(A, z)+Y(B, z)S+ Y(B, z)∂

−k−1
z Y(A, z)−S

)
which is clearly in V [[z]]. While for k ≥ 0

Y(AkB, z)S =

∫ (
(w− z)k

(
Y(A,w)Y(B, z)S+ Y(B, z)Y(A,w)S

))
dw

which again is easily seen to be in V [[z]].

The characterization we gave in theorem 3.2.2 of the vertex operators naturally leads to the
following theorem which is a good starting point to construct vertex algebras.

Theorem 3.2.3. (Strong Reconstruction) Let V be a vector space, |0〉 ∈ V a vector and T an endomorphism
of V . Let

aα(z) =
∑
n∈Z

aαnz
−n−1

where α runs over an ordered set I, be a collection of fields on V such that:

1. [T, aα(z)] = ∂za
α(z);

2. T |0〉 = 0 and aα(z)|0〉 ∈ V [[z]], we will call aα := aα−1|0〉;

3. For any α,β ∈ I the fields aα(z) and aβ(z) are mutually local;

4. The lexicographically ordered monomials aα1−n1−1 . . . a
αn
−nm−1|0〉 with ni ≥ 0 span V .

Then the formula

Y(aα1−n1−1 . . . a
αn
−nm−1|0〉, z) =

i=m∏
i=1

1

ni!
: ∂n1z a

α1(z) . . . ∂nmz aαm(z) :

defines a vertex algebra structure on V such that |0〉 is the vacuum vector, T the translation operator
and Y(aα, z) = aα(z) for all α ∈ I. Moreover, this is the unique vertex algebra structure on V satisfying
conditions 1,2,3,4 and such that Y(aα, z) = aα(z).

We are going to give some example of vertex algebras though we will limit ourselves to the
vertex algebras that are the most interesting for us: the Virasoro algebra and the algebra Vk(ĝ)
associated to the affine algebra ĝk.
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3.3 The Virasoro Algebra

Consider K = C((t)) and let
DerK = C((t))∂t

be the Lie algebra of continuous derivation of K, with the Lie bracket given by the usual formula

[f(t)∂t, g(t)∂t] =
(
f(t)g ′(t) − f ′(t)g(t)

)
∂t

We consider a central extension of DerKwhich we will denote by Vir the Virasoro algebra.

Definition 3.3.1. The bilinear map

2∧
DerK→ C (f(t)∂t, g(t)∂t) 7→ −

1

12
Rest=0

(
f(t)g ′′′(t)dt

)
is a cocycle inH2(DerK,C) and therefore defines a central one dimensional extension Vir ofDerK
which satisfies the exact sequence

0→ CC→ Vir→ DerK→ 0

As a vector space Vir = DerK⊕ CC, C is central and the bracket is given by

[f(t)∂t, g(t)∂t]Vir =
(
f(t)g ′(t) − f ′(t)g(t)

)
∂t −

C

12
Rest=0

(
f(t)g ′′′(t)dt

)
If we consider the topological generators Ln := −tn+1∂t n ∈ Z we obtain the following relations:

[Ln, Lm] = (n−m)Ln+m +
n3 − n

12
δn,−mC (3.5)

In the definition the factor 1
12

is of course inessential, but it is present for notational and histor-
ical reasons. In what follows we will define a vertex algebra closely related to Vir, we will see that
this construction in a certain sense generalizes to the construction of Vk(ĝ).

3.3.1 The vertex Virasoro algebra

Consider the Lie subalgebra DerO ⊕ CC ⊂ Vir where DerO is the Lie subalgebra consisting of
derivations f(t)∂t with f(t) ∈ C[[t]]. Consider also its one dimensional module Cc where DerO
acts trivially while C acts by the multiplication of c ∈ C.

Define a Virmodule inducing the representation just presented:

Virc := Ind
Vir
DerO⊕CCCc = U(Vir)⊗U(DerO⊕CC) Cc

This is of course a Virmodule and by the Poincaré-Birkhoff-Witt theorem (which we will refer
to as the PBW theorem from now on) it has a basis given by the monomials

Ln1 . . . Lnm |0〉 with n1 ≤ · · · ≤ nm < −1

Where |0〉 is a fixed generator of Cc. We define a structure of Z+ graded vertex algebra on Virc,
we will extensively use the reconstruction theorem presented in the previous section (3.2.3).
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• (Z+ grading) We set degLn1 . . . Lnm |0〉 = −
∑
i ni. Notice that since in Vir we have the

relations [L0, Ln] = −nLn and since L0|0〉 = 0 the operator L0 acts exactly as the grading
operator;

• (Translation operator) Set the translation to be T := L−1. Notice that the action of T is com-
pletely determined by the properties that in Vir the relations [L−1, Ln] = (−n− 1)Ln−1 hold
and that L−1|0〉;

• (Vertex Operators) We set

Y(L−2|0〉, z) = T(z) :=
∑
n∈Z

Lnz
−n−2

By the reconstruction theorem and since the monomials Ln1 . . . Lnm |0〉 span Virc to obtain
a vertex algebra we only have to check that T(z) is local with itself and that [T, Y(L−2|0〉, z)] =
∂zY(L−2|0〉, z). Both of these are straightforward calculations and we omit them. It turns out that

[T(z), T(w)] =
c

12
∂3wδ(z−w) + 2T(w)∂wδ(z−w) + ∂wT(w) · δ(z−w)

and therefore (z−w)4[T(z), T(w)] = 0. The number c is known as the central charge.
The Virasoro algebra comes in the picture numerous times. A very important class of vertex

algebras is equipped with an action of Vir where C acts by scalar multiplication by a certain cen-
tral charge c. We are particularly interested in such algebras where the action comes by internal
symmetries, which is to say that there is a vector ω ∈ V whose Fourier coefficients generates the
action of the Virasoro algebra. This leads to the following definition.

Definition 3.3.2. A Z graded vertex algebra V is said to be conformal of central charge c if there
is a non-zero vector ω ∈ V2 such that the Fourier coefficients LVn of the corresponding vertex
operator

Y(ω, z) =
∑
n

LVnz
−n−2

satisfy the commutation relation of the Virasoro algebra with central charge c and if in addition
we have deg = LV0 and T = LV−1. Note that with respect with our standard definition LVn = ωn+1

A vertex algebra may be equipped with various structures of conformal vertex algebra. A first
example is the Virasoro vertex algebra itself, taking the conformal vector to be ω = L−2|0〉. In this
case the conformal vector is unique since (Virc)2 is one dimensional and L−2 is the only scalar
multiple of L−2 which satisfies all the desired properties (for instance λ(L−2|0〉)1 = λdeg). We
state a very useful lemma.

Lemma 3.3.1. A Z+ graded vertex algebra V is conformal of central charge c if and only if it contains a
nonzero vectorω ∈ V2 such that the Fourier coefficients of the corresponding vertex operator

Y(ω, z) =
∑
n

LVnz
−n−2

satisfy the following conditions: LV−1 = T, L
V
0 = deg and LV2ω = c

2
|0〉. Moreover in the case this conditions

are satisfied there exists a unique morphism of vertex algebras Virc → V such that L−2|0〉 7→ ω.
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Proof. We need to show the following OPE

Y(ω, z)Y(ω,w) =
Y(Tω,w)

(z−w)
+ 2

Y(ω,w)

(z−w)2
+
c

2

1

(z−w)4

which amounts to show that

LV−1ω = Tω LV0ω = 2ω LV1ω = 0 LV2ω =
c

2
|0〉 LVnω = 0 for n > 2

The last equation is true because V is Z+ graded and LVnω has negative degree for n > 2, all the
other equations are true by hypothesis, except the third one.

To prove it denote by γ(w) := Y(LV1ω,w) by the OPE formula we find

[Y(ω, z), Y(ω,w)] =
c

12
∂3wδ(z−w)+γ(w)∂

2
wδ(z−w)+2Y(ω,w)∂wδ(z−w)+∂wY(ω,w) ·δ(z−w)

Now we consider the same expression with z replaced by w and vice versa. Using the fact that
∂zδ(z−w) = −∂wδ(z−w) and summing the two equations we find

0 = (γ(w) + γ(z))∂2wδ(z−w)

3.4 The Verma module Vk(ĝ)

We are now going to define a vertex algebra Vk(ĝ) closely related to ĝk, the vacuum Verma module.
The subspace g[[t]] ⊕ C1 is a Lie subalgebra of ĝk. Analogously to what we have done for the
Virasoro algebra we consider the one dimensional module C|0〉 for g[[t]] ⊕ C1 on which g[[t]] acts
trivially while 1 acts as the identity.

Next we consider the induced module

Vk(ĝ) := Ind
ĝk
g[[t]]⊕C1C|0〉

One can easily check that this is a smooth module for ĝk. Let Ja be an ordered basis for g (this
will be our standard notation from now on) and denote by Jan := Ja⊗tn ∈ ĝk, these are topological
generators for ĝk subject to the relations

[Jan, J
b
m] = [Ja, Jb]n+m + nκ(Ja, Jb)δn,−m1

By the Poincarè-Birkhoff-Witt theorem Vk(ĝ) has a basis consisting of the lexicographically
ordered monomials

Ja1n1 . . . J
am
nm

|0〉 with n1 ≤ n2 ≤ · · · ≤ nm < 0 and if ni = ni+1 then ai ≤ ai+1
We are going to define the structure of a Z+ graded vertex algebra on Vk(ĝ).

• We take |0〉 as the vacuum vector;

• We set the grading to be deg Ja1n1 . . . J
am
nm

|0〉 := −
∑
ni
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• As the translation operator we consider the operator −∂t acting on ĝk, more concretely we
define the operator T through the conditions

[T, Jan] = nJ
a
n−1 T |0〉 = 0

• For the vertex operators we define

Y(Ja−1, z) = J
a(z) :=

∑
n

Janz
−n−1

By the reconstruction theorem, as in the case of the Virasoro algebra, we only have to check that
the vertex operators Ja(z) are mutually local with each other and that [T, Y(Ja−1|0〉, z) = ∂zY(Ja−1, z).
This are both quite easy calculations, in particular it turns out that

[Ja(z), Jb(w)] = [Ja, Jb](w)δ(z−w) + κ(Ja, Jb)∂wδ(z−w) (3.6)

As the Z+ grading is concerned it is easy to see that Y(Ja−1|0〉, z) =
∑
n J
a
nz

−n−1 has confor-
mal dimension equal to 1 as desired. As remarked before if A(z) is a field of conformal dimen-
sion m its derivative ∂nzA(z) is a field of conformal dimension m + n, so the fields Y(Jan|0〉, z) =

1
(−n−1)!∂

n
z Y(J

a
−1|0〉, z) have conformal dimension n as desired. An easy induction shows that

Y(Ja1n1 . . . J
am
nm

|0〉, z) has conformal dimension −
∑
ni. Finally the operator T is clearly of degree

1while |0〉 is of degree 0. All axioms of a Z+ graded vertex algebra are hence satisfied.
We are now going to study more in detail the vertex algebra Vk(ĝ) as k varies, we are going

to define the Segal-Sugawara operators (or just Sugawara operators for short). Studying these
operators we will see the first appearance of the critical value k = −1/2, indeed the Sugawara
operators will be central only for k = −1/2.

3.4.1 The Segal-Sugawara Operators

Consider the killing form κg on g. Since it is non degenerate given a basis Ja of g we may consider
the dual basis Ja with respect to the killing form. It is defined by the relations κg(Ja, Jb) = δa,b.
Consider the element

S :=
∑
a

Ja−1Ja,−1|0〉 ∈ Vk(ĝ)

Definition 3.4.1. (Segal-Sugawara Operators) Given a simple Lie algebra g consider the vacuum
Verma module Vk(ĝ) and the element S ∈ Vk(ĝ) just defined. The operators Sn

Y(S, z) =
∑
n

Snz
−n−2 =: S(z)

are called the Segal-Sugawara Operators.

The definition of the element S gets inspiration from the Casimir element of the standard uni-
versal enveloping algebra U(g). Similarly to the Casimir element S does not depend on the choice
of the basis Ja (but if we change the associative form with which we calculate the dual basis S
will be modified by a scalar). The Casimir element being central, it is reasonable to think that the
Sugawara operators commute at least with the action of ĝk on Vk(ĝ). This though, is not always
true as the following proposition shows.
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Proposition 3.4.1. We have the following OPE

Ja(z)S(w) ∼ (k+
1

2
)
Ja(w)

(z−w)2

In particular the following commutation relations hold

[Jam, Sn] = (k+
1

2
)mJan+m (3.7)

And therefore the Sugawara operators commute with the action of ĝk if and only if κ = −1
2
κg whis will be

called the critical value.

Proof. This is just a simple computation. By the OPE formula we have

Ja(z)S(w) ∼
∑
n≥0

Y(JanS,w)

(z−w)n+1

Since Vk(ĝ) is Z+ graded, S is of degree 2 and Jan is of degree −nwe only need to compute JanS for
n = 0, 1, 2. We recall here the commutation relations in ĝk:

[Jan, J
b
m] = [Ja, Jb]n+m + nκ(Ja, Jb)δn,−m

• (n = 0) Since [Ja0 , J
b
−1] = [Ja, Jb]−1 and since Ja0 |0〉 = 0we have

Ja0S =
1

2

∑
b

([Ja, Jb]−1Jb,−1 + J
b
−1[J

a, Jb]−1)|0〉

This corresponds to take the commutator with the Casimir element. The same proof of the
centrality of the Casimir element applied in our situation provides us with Ja0S = 0;

• (n = 1) As before Ja1 |0〉 = 0 and [Ja1 , J
b
−1] = [Ja, Jb]0 + κ(J

a, Jb)1. We have:

Ja1S =
1

2

∑
b

((
[Ja, Jb]0 + κ(J

a, Jb)
)
Jb,−1 + J

b
−1

(
[Ja, Jb]0 + κ(J

a, Jb)1
))

|0〉

The expression
1

2

∑
b

(
κ(Ja, Jb)Jb,−1 + κ(J

a, Jb)J
b
−1

)
|0〉

is exactly equal to kJa−1|0〉. Indeed since Jb is the dual basis of Jb with respect with the killing
form κg we have

1

2

∑
b

κ(Ja, Jb)Jb =
k

2

∑
b

κg(J
a, Jb)Jb =

k

2
Ja

The same is true for 1
2

∑
b κ(J

a, Jb)J
b.

Next we focus on the remaining term

1

2

∑
b

(
[Ja, Jb]0Jb,−1 + J

b
−1[J

a, Jb]0

)
|0〉 = 1

2

∑
b

[Ja, Jb]0Jb,−1|0〉 =
1

2

∑
b

[[Ja, Jb]Jb]−1|0〉
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We must therefore calculate the sum
∑
b[[J

a, Jb], Jb]. We claim it is equal to Ja. Notice first
that this is exactly the action of the Casimir element

∑
b JbJ

b through the adjoint represen-
tation. Since g is simple and the Casimir element is central it must act like a scalar. To
determine this scalar we compute the trace

tr
(∑
b

JbJ
b
)
=
∑
b

tr(ad (Jb)ad (Jb)) =
∑
b

κg(Jb, J
b) = dim g

So
∑
b JbJ

b acts as the identity on the adjoint representation and
∑
b[[J

a, Jb]Jb] = Ja as
desired. To sum up we proved that Ja1S = (k+ 1

2
)Ja−1|0〉;

• (n = 2) As always we have Ja2 |0〉 = 0 and [Ja2 .J
b
−1] = [Ja, Jb]1 we have to compute

1

2

∑
b

(
[Ja, Jb]1Jb,−1+J

b
−1[J

a, Jb]1

)
|0〉 = 1

2

∑
b

[Ja, Jb]1Jb,−1|0〉 =
1

2

∑
b

(
[[Ja, Jb]Jb]0+κ([J

a, Jb], Jb)1
)
|0〉

The first term of this last sum acts like 0 on |0〉 so all that we are left to compute is∑
b

κ([Ja, Jb], Jb)

Since S does not depend on the choice of the basis, we may as well assume that Jb is an or-
thonormal basis so that Jb = Jb. Using the associativity of κwe find out that κ([Ja, Jb], Jb) =
κ(Ja, [Jb, Jb] = 0 and the sum is 0.

The last part of the proposition, the statement that [Jam, Sn] = (k+ 1
2
)mJan+m follows from a simple

expansion of the OPE we just calculated.

We just found out that the Sugawara Operators commute with the action of ĝk for k = kc = −1
2

.
We remark here that some of these operators are actually 0. Indeed for n ≥ −1 since Y(S, z)|0〉 ∈
V [[z]] we have that Sn|0〉 = 0, in addition Sn commutes with the action of ĝk so it must be identi-
cally 0.

We investigate now some of the properties of the Sugawara Operators away from the critical
level. So, in what follows, consider k 6= 1

2
. Normalize Swith this assumption as follows:

S̃ :=
1

k+ 1/2
S

From formula 3.7 with this new normalization the following commutation relations hold:

[S̃n, J
a
m] = −mJan+m

This is a very nice formula. In particular it shows that S0 = deg and that S−1 = T .
Recalling that Jan = Ja ⊗ tn we see that the action of S̃n looks like the action of −tn+1∂t. We

want to see if it is true that the commutations relations of the operators S̃n are the same as the
operators −tn+1∂t. We will see that this is almost true: the S̃n do not generate an action of DerK
but they do generate an action of its central extension Vir.
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Proposition 3.4.2. The following OPE relation hold:

S̃(z)S̃(w) ∼
∂wS̃(w)

(z−w))
+

2S̃(w)

(z−w)2
+

k
k+1/2 dim g/2

(z−w)4

We denote the constant term of the factor (z − w)−4 by ck/12. In particular the S̃n generate an action of
the Virasoro algebra with central charge ck. Vk(ĝ) for k 6= −1/2 is therefore a conformal vertex algebra of
central charge ck.

Proof. It is sufficient to calculate the OPE

S̃(s)S̃(w) ∼
∑
n≥−1

Y(SnS,w)

(z−w)n+2

the shifting of indices is due to our shifted definition of the S̃n. Since Sn has degree n and S has
degree 2 we can restrict ourselves to n = −1, 0, 1, 2, recall that for n ≥ −1 we have S̃n|0〉 = 0. We
proceed with the calculations applying the commutation relations

[S̃n, J
a
m] = −mJan+m

• (n = −1) We must calculate S̃−1 12
1

k+1/2

∑
b J
b
−1Jb,−1|0〉 this is equal to

1

2

1

k+ 1/2

∑
b

(
[S̃−1, J

b
−1]Jb,−1+ J

b
−1[S̃−1, Jb,−1]

)
|0〉 = 1

2

1

k+ 1/2

∑
b

(
Jb−2Jb,−1+ J

b
−1Jb,−2

)
|0〉

which is just T(S̃)

• (n = 0) As in the previous point we calculate

1

2

1

k+ 1/2

∑
b

(
[S̃0, J

b
−1]Jb,−1+J

b
−1[S̃0, Jb,−1]

)
|0〉 = 1

2

1

k+ 1/2

∑
b

(
Jb−1Jb,−1+J

b
−1Jb,−1

)
|0〉 = 2S̃

• (n = 1) We omit the first passage which is always the same, we obtain

1

2

1

k+ 1/2

∑
b

(
Jb0Jb,−1 + J

b
−1Jb,0

)
|0〉 = 1

2

1

k+ 1/2

∑
b

[Jb, Jb]−1|0〉

which is 0 as we can choose Jb = Jb;

• (n = 2)

1

2

1

k+ 1/2

∑
b

(
Jb1Jb,−1+J

b
−1Jb,1

)
|0〉 = 1

2

1

k+ 1/2

∑
b

(
[Jb, Jb]0+κ(J

b, Jb)1
)
|0〉 = k

k+ 1/2
dim g/2|0〉
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We obtained that for any k 6= −1/2 the vertex algebra Vk(ĝ) is a conformal algebra. Informally,
the algebra Vkc(ĝ) may be viewed as the limit for k→ kc of the vertex algebras Vk(ĝ) for k 6= −1/2,
we may wander if the conformal structures ‘pass to the limit’ and generate at least an action of the
Virasoro algebra.

The following definition arises quite naturally.

Definition 3.4.2. A a vertex algebra V is said to be quasi-conformal if it is equipped with aDerO
action which satisfies the following conditions:

• For any A ∈ V and any n ≥ −1,m ∈ Z

[Ln, Am] =
∑
k≥−1

(
n+ 1

k+ 1

)
(LkA)n+m−k

• The operator L−1 = −∂t acts like the operator T ;

• L0 acts semisimply with integer eigenvalues;

• The Lie subalgebra Der+O = tC[[t]]∂t acts locally nilpotently.

These axioms, in particular the first one, emulate the behaviour of a conformal algebra. The
main difference is that the action of DerO does not need to be generated by a conformal vector,
neither we ask it to be part of a DerK action.

Remark 3.4.1. A quasi conformal vertex algebra for which L0|0〉 = |0〉 is automatically Z graded.
Indeed consider L0 as the grading operator, this is well defined since L0 acts semisiply with integer
eigenvalues. The translation operator has degree 1 since [L0, L−1] = L−1. On the other hand,
considering an homogeneous vector A ∈ Vm (i.e L0A = mA) we have that

[L0, An] =
∑
k≥−1

(
1

k+ 1

)
(LkA)n−k = (L−1A)n+1 + (L0A)n = (TA)n+1 +mAn = (m− n− 1)An

so An has degreem− n− 1 as desired.

Notice that ĝk has a natural DerO action: namely the one induced from the natural action on
g((t)). Since this action preserves the subalgebra g[[t]] ⊕ C1 we have that it induces an action on
the algebra Vk(ĝ). For k away from the critical level, this action is described by the Sugawara
operators. At the critical level we still have

Proposition 3.4.3. The natural action of DerO on the vertex algebra Vkc(g) makes it a quasi conformal
vertex algebra.

Proof. Consider the lie algebra Lg[k] = Lg ⊗ C[k] where C[k] is the free polynomial algebra in the
variable k. Consider the C[k] bilinear cocycle on Lg[k] defined by

c
(
X⊗ f(t)⊗ p(k), Y ⊗ g(t)⊗ q(k)

)
:= p(k)q(k)κg(X, Y)

∫
f(t)g ′(t)dt

denote by ĝ = Lg[k]⊕C[k]1 the central extension obtained with this cocycle. It is a C[k] Lie algebra.
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Consider the module
V(ĝ) := Ind ĝ

g[[t]][k]⊕C[k]1C[k]|0〉

where g[[t]][k] acts trivially while 1 acts as the identity (all actions are C[k]-linear). By the PBW
theorem V(ĝ) has a C[k] basis given by the lexicographically ordered monomials

Ja1n1 . . . J
am
nm

|0〉

as in the case of Vk(ĝ). We define C[k]-linear vertex operators in the same way we did with Vk(ĝ).
We obtain a C[k] vertex algebra whose reduction to k − k = 0 is isomorphic to Vk(ĝ).

Let S be defined as in the case of Vk(ĝ)

S :=
1

2

∑
a

Ja−1Ja,−1|0〉 ∈ V(ĝ)

then the vertex operators Sn for n ∈ Z defined by Y(S, z) =
∑
n∈Z Snz

−n−2 satisfy the following
relations:

[Sn, J
a
m] = −(k + 1/2)mJan+m

As well as the ordinary vertex algebra relations

[Sn, Am] =
∑
k≥−1

(
n+ 1

k+ 1

)
(SkA)n+m−k

(the shift of the indices is due to the fact that the Sn are shifted with respect to the usual notation).
Now the action of DerO on Lg induces a C[k] linear action on Lg[k] and hence a C[k] linear

action on V(ĝ) whose specialization to k = k coincide with the DerO action on Vk(ĝ). The com-
mutation relations

[Ln, J
a
m] = −mJan+m

uniquely determine the operators Ln and therefore we find that

Sn = (k + 1/2)Ln

These implies that the expressions

[Ln, Am] and
∑
k≥−1

(
n

k

)
(LkA)n+m−k

are equal after multiplying by (k + 1/2). These expressions live in End C[k]V(ĝ) which is a free
C[k] module and hence torsion free. The expressions above are therefore equal (it is not necessary
anymore to multiply by (k+1/2)) and specializing to k = −1/2 = kc we get the desired statement.

This concludes the properties that we wanted to explore in this chapter. In the following chap-
ter we will investigate the relation between Vk(ĝ) and the completed enveloping algebra Ũκ(ĝ).
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Chapter 4

The relationship between Vκ(g) and
Ũκ(ĝ)

In this chapter we investigate the relationship between the vertex algebra Vk(ĝ) and the completed
enveloping algebra Ũκ(ĝ). We will see that there is a way to associate to any vertex operator in
Vk(ĝ) a sequence of elements in Ũκ(ĝ). This association preserves the commutation relations in
particular central elements in Vk(ĝ) will produce a lot of central elements Ũκ(ĝ). Everything will
be explained more precisely in what follows.

4.1 The Lie algebra associated to a Vertex Algebra

In the previous chapter we presented the commutation formulas

[An, Bm] =
∑
k≥0

(
n

k

)
(AkB)n+m−k [T,An] = −nAn−1

which are valid in EndV and prove that the span of the Fourier coefficients in EndV for a Lie
algebra with the usual commutator. We are now going to generalize this result: we will define
U(V) the Lie algebra of ‘formal Fourier coefficients’. It is topologically spanned by elements of the
form A[n] with A ∈ V which are the analogues of the Fourier coefficient An. This will be much
larger than the actual algebra of Fourier coefficient for instance we may have An = 0 but A[n] 6= 0.
This property is going to be very important.

Definition 4.1.1. Let U(V) be the vector space defined as

U(V) :=
V ⊗C C((t))

Im∂
where ∂ = T ⊗ 1 + 1⊗ ∂t

and equip U(V) with the topology induced by the subspaces U(V)n = Im (V ⊗ tnC[[t]] → U(V)).
This makesU(V) into the completion ofU ′(V) := V⊗C[t, t−1]/Im∂ under the topology generated
by the subspaces U ′(V)n := Im(V ⊗ tnC[t]→ U ′(V)). For A ∈ V and n ∈ Z denote by

A[n] := [A⊗ tn]

55



This is a set of topological generators for U(V) and a set of generators for U ′(V). Finally define a
bilinear map

[., .] : U ′(V)⊗2 → U ′(V) [A[n], B[m]] :=
∑
k≥0

(
n

k

)
(AkB)[n+m−k]

where AkB is the usual k-product on V .

The bilinear map defined above may be checked to be continuous with respect to the topology
defined above. We will denote by [., .] its extension to U(V). We want to check that [., .] is actually
a Lie bracket onU(V). By continuity it is enough to check it onU ′(V) and therefore we will do our
calculations on elements of the form A[n].

Proposition 4.1.1. The formula above is well defined and it induces a Lie bracket on U(V). The natural
map

Y : U(V)→ EndV [A⊗ f(t)] 7→ ∫ Y(A, z)f(z)dz
is an homomorphism of Lie algebras.

Proof. Let’s check first that [., .] is well defined on U ′(V). The formula above certainly defines a
bilinear map

(
V ⊗ C[t, t−1])

)⊗2 → V ⊗ C[t, t−1]. We need to check that [∂(v), w] ∈ Im∂ and that
[v, ∂(w)] ∈ Im∂ for any v,w ∈ V ⊗ C[t, t−1].

• ([v, ∂(w)] ∈ Im∂) As stated before we can restrict ourselves to the elements of the form
v = A[n] and w = B[m] we have

[A[n], ∂(B[m])] = [A[n], (TB)[m]+mB[m−1]] =
∑
k≥0

(
n

k

)(
Ak(TB))[n+m−k]+m(AkB)[n+m−k−1]

)
This is easily checked to be equal to

∂

(∑
k≥0

(
n

k

)
(AkB)[n+m−k]

)

• ([∂(v), w] ∈ Im∂) The expression

[∂A[n], B[m]] =
∑
k≥0

(
n

k

)(
(TA)kB)[n+m−k]

)
+

(
n− 1

k

)
n(AkB)[n+m−k−1

may be checked to be 0.

Let’s prove now that this bilinear map gives us actually a Lie bracket. We are going to consider
first the subspace U ′(V)0 = V/ImT = Im (V → U ′(V)) given by A 7→ A[0]. Notice first that this
subspace is preserved by the bilinear map [., .]. Indeed [A[0], B[0]] = (A0B)[0].

From the skew symmetry property

Y(A, z)B = ezTY(B,−z)A
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it is quite clear that the following equality holds in V

A0B = −B0A+ T(. . . )

This easily implies that [., .] is alternating:

[A[0], B[0]] = (A0B)[0] = −(B0A)[0] + (T(. . . ))[] = −(B0A)[0] = −[B[0], A[0]]

To prove the Jacobi identity consider the equality

[A0, B0] = (A0B)0

which is easily derived from the OPE formula. We next compute

[A[0], [B[0], C[0]]] = (A0(B0C))[0] =
(
[A0, B0]C+ B0A0C

)
[0]

=
(
(A0B)0C+ B0(A0C)

)
[0]

which is exactly [[A[0], B[0]], C[0]]+[B[0], [A[0], C[0]]]. We proved that the subspace V/ImT with this
bilinear form is actually a Lie algebra. To deduce that the entire space U ′(V) is a Lie algebra with
the product we defined consider the vertex algebra V ⊗ C[t, t−1] where we consider C[t, t−1] as a
commutative vertex algebra with the derivation ∂t. Recall that the vertex operators are given by

Y(A⊗ B, z) = Y(A, z)⊗ Y(B, z)

In our particular case consider A⊗ tn and recall that

Y(tn, z) =
∑
k≥0

zk

k!
mult(∂kt t

n) =
∑
k≥0

(
n

k

)
mult(tn−k)zk

So we have

(A⊗ tn)0 =
∑
k≥0

Ak ⊗
(
mult

((n
k

)
tn−k

))
In particular if we can identify U ′(V) = U ′(V ⊗C[t, t−1])0 since TV⊗C[t,t−1] = ∂. We find from the
above formulas that the bilinear map defined in both cases is actually the same. Since we proved
that on U ′(V ⊗ C[t, t−1])0 it defines a Lie bracket the same must be true for U ′(V).

Remark finally that the association V 7→ U(V) is actually functorial. Indeed given a morphism
of vertex algebras ϕ : V → V ′ is quite easy to see that the morphism

U(ϕ) : U(V)→ U(V ′) A[n] 7→ (ϕ(A))[n]

Is well defined and an homomorphism of Lie algebras.
We conclude with a fundamental remark regarding the center of the vertex algebras we are

considering.

Remark 4.1.1. If S ∈ V is a central element then the elements S[n] ∈ U(V) are all central (i.e
[x, S[n]] = 0 for any x ∈ U(V)).
Proof. Recall that we already proved that an element S ∈ V is central if and only if for any A ∈ V
we have AnS = 0 for all n ≥ 0. This implies that for any A[m] ∈ V

[A[m], S[n]] =
∑
k≥0

(
n

k

)
(AkS)[m+n−k] = 0

Since the A[m] topologically span U(V) and the bracket is continuous the proof is completed.
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4.2 The relationship between Vκ(ĝ) and Ũκ(ĝ)

We are going to define a morphism of Lie algebras U(Vk(ĝ)) → Ũκ(ĝ) which sends (Ja−1|0〉)[n] 7→
Jan.

This remarkable morphism allow us to produce a large number of central elements in Ũκ(ĝ)
since any central element S ∈ ζ(Vk(ĝ)) will generate central elements in S[n] ∈ U(V), which in
particular commute with the elements (Ja−1|0〉)[n]. The images of the S[n] commute therefore with
the Jam, since these (along with 1 which is already central) topologically generate the algebra Ũκ(ĝ)
we obtain that the images of the S[n] are also central in Ũκ(ĝ).

Start by considering the formal series

Y[Ja−1|0〉, z] =
∑
n∈Z

Janz
−n−1

as series with coefficients in Ũκ(ĝ).
With the next definition we extend the definition of fields to the case of Ũκ(ĝ) in order to exhibit

some of the typical vertex algebras calculations in this setting.

Definition 4.2.1. A formal series a(z) ∈ Ũκ(ĝ)[[z±1] is called a Ũκ(ĝ)-field if its action by left
multiplication induced on the quotients Ũκ(ĝ)/In is the one of a field.

The following is an easy verification.

Remark 4.2.1. The formal series Y[Ja−1|0〉, z] are Ũκ(ĝ)-fields. If a(z) ∈ Ũκ(ĝ)[[z±1]] is a Ũκ(ĝ)-field
then its derivative ∂za(z) is a field.

Lemma 4.2.1. If a(z), b(z) ∈ Ũκ(ĝ)[[z±1]] are two Ũκ(ĝ)-fields then the formal series

∂nwδ(z−w)+a(w)b(z)

where δ(z − w)+ is the positive part of δ(z − w) with respect to the variable w, is a well defined series in
Ũκ(ĝ)[[z

±1, w±1]]. Its residue with respect to w is therefore a well defined series in Ũκ(ĝ)[[z±1]] which in
addition on Ũκ(ĝ)-field.

In particular the normally ordered products (calculated in Ũκ(ĝ))

: ∂nz a(z) · b(z) :

are a well defined formal series in Ũκ(ĝ)[[z±1]] and in addition they are Ũκ(ĝ)-fields.

Proof. We consider the coefficients of a(z) and b(z) as the endomorphisms of Ũκ(ĝ) induced by
left multiplication. The analogous statements for fields on a vector space is easily seen to be true.
Therefore the formal series

∂nwδ(z−w)+a(w)b(z)

Defines a well defined endomorphism of Ũκ(ĝ)/In for every positive integer n ≥ 0.
Since the various fields defined on the quotients Ũκ(ĝ)/In are compatible with the projections

Ũκ(ĝ)/Im → Ũκ(ĝ)/In each coefficient of ∂nwδ(z − w)+a(z)b(w) defines an endomorphism of
Ũκ(ĝ).
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Analogously for any n ≥ 0 and for any k ∈ Z the infinite sums appearing as the coefficients of
∂nwδ(z−w)+a(z)b(w)1 are (by the field condition) actually finite sums in Ũκ(ĝ)/In, since Ũκ(ĝ) is
complete we have that each coefficient of ∂nwδ(z−w)+a(z)b(w) defines an element of Ũκ(ĝ).

The endomorphism of the coefficients ∂nwδ(z−w)+a(w)b(z) on Ũκ(ĝ)/In coincide with the left
multiplication by these elements and therefore the residue

∫
∂nwδ(z − w)+a(w)b(z)dw is again a

Ũκ(ĝ)-field.
The statement concerning the normally ordered product easily follows from noticing that∫ (

∂nwδ(z−w)+a(w)b(z) − ∂
n
wδ(z−w)−b(z)a(w)

)
dw =: ∂nz a(z) · b(z) :

Corollary 4.2.1. For any m ≥ 1, any m-tuple of integers n1, . . . , nm < 0 and any m-tuple of indices
a1, . . . , am the normally ordered product

: ∂−n1−1z Y[Ja1−1|0〉, z] . . . ∂
−nm−1
z Y[Jam−1 |0〉, z] :

computed in Ũκ(ĝ) is again a well defined formal series with coefficients in Ũκ(ĝ).

This allows us to extend linearly the map Ja−1|0〉 7→ Y[Ja−a|0〉], z] linearly to the whole Vk(ĝ)

Y[., z] : Vk(ĝ)→ Ũκ(ĝ)[[z
±1]]

Y[Ja1n1 . . . J
am
nm

|0〉, z] = 1

−n1 − 1
. . .

1

−nm − 1
: ∂−n1−1z Y[Ja1−1|0〉, z] . . . ∂

−nm−1
z Y[Jam−1 |0〉, z] :

This is definition is completely analogous to the one of the vertex operators. There is a big
difference though: the coefficients of these new vertex operators are elements of Ũκ(ĝ)!

Theorem 4.2.1. The linear mapΦ : U ′(Vk(ĝ))→ Ũκ(ĝ) defined on the generators

A[n] 7→ (
Y[A, z]

)
n

where
(
Y[A, z]

)
k

is the k-th coefficient of the series (i.e. the coefficient of z−k−1 following our usual nota-
tion). Is a well defined continuous linear map and it is an homomorphism of Lie algebras. In particular since
Ũκ(ĝ) is complete it induces an homomorphism of Lie algebras

Φ : U(Vk(ĝ))→ Ũκ(ĝ)

Consider for a moment the following diagram:

U(Vk(ĝ)) Ũκ(ĝ) EndVk(ĝ)

U(Vk(ĝ)) EndVk(ĝ)

Φ

id id

All the maps reported above are homomorphisms of Lie algebras and by how we defined the
map Φ this diagram is also commutative. If the morphism U(Vk(ĝ)) → EndVk(ĝ) was injective
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we would already be done, but unfortunately this is false in general. In particular it is false the
case we are most interested: k = kc. Indeed we will see that the Sugawara operators Φ(S[n])

are non-zero in Ũκ(ĝ), but we remarked that for n ≥ −1 and k = kc act like 0 on Vkc(g), so the
morphism U(V)→ EndVkc(ĝ) is not injective.

Consequently the theorem does not follow from the above diagram and we have to work a
little bit harder. Its proof will occupy the rest of the section, we will start with some definitions
and some technical lemmas.

Definition 4.2.2 (m-product for series). Given two Ũκ(ĝ) fields (or two fields) a(z), b(z) we define

a(w)mb(w) :=

∫
(z−w)m[a(z), b(w)]dz m ≥ 0

a(w)mb(w) :=
1

(−m− 1)!
: ∂−m−1
z a(w) · b(w) : m < 0

In addition notice that form ≥ 0 the following equality holds:

a(w)−m−1b(w) :=
1

m!

∫ (
∂mwδ(z−w)+a(z)b(w) − ∂

m
wδ(z−w)−b(w)a(z)

)
dz

Lemma 4.2.2 (Ũκ(ĝ) Dong Lemma). If a(z), b(z), c(z) are mutually local Ũκ(ĝ)-fields then the fields
a(z)mb(z) and c(z) are mutually local for everym ∈ Z as well.

Proof. This is exactly the same proof as the Dong Lemma regarding the usual notion of fields. A
proof can be found in [Fre07], lemma 2.2.3.

If a(z) and b(z) are also local with respect to each other we know that

[a(z), b(w)] =
∑
m≥0

1

m!
Cm(w)∂mwδ(z−w)

It is quite clear, using the properties of δ, that

Cm(w) = a(w)mb(w) m ≥ 0

We immediately notice that in order to prove that the map U(Vk(ĝ) → Ũκ(ĝ) is an homomor-
phism of Lie algebra it is enough to prove the following proposition.

Proposition 4.2.1. For any two vectors A,B ∈ Vk(ĝ) and for anym ∈ Z we have that

Y[A,w]mY[B,w] = Y[AmB,w]

Indeed this is clearly implies the theorem since by the above remarks we obtain [Y[A, z], Y[B,w]] =∑
m≥0

1
m!Y[AmB,w]∂

m
wδ(z−w).

The following lemma can be found also in [Kac98, Theorem 4.1], we restate it in terms of Ũκ(ĝ)-
fields.
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Lemma 4.2.3 (Kac). Let V be a collection of mutually local Ũκ(ĝ)-fields (or fields) which is a vector space
and which is closed by all the m-th products then V alongside the datum |0〉 = id

Ũκ(ĝ)
, T = ∂t and the

vertex operators
Y(a(t), z)b(t) :=

∑
k∈Z

a(t)kb(t)z
−k−1

is a vertex algebra.

Proof. It is not difficult to show that if (z−w)N[a(z), b(w)] = 0 then

(z−w)N[Y(a(t), z), Y(b(t), w)] = 0

and this essentially proves locality. The other axioms of a vertex algebra are obvious.

Using the Dong lemma repeatedly we see that the closure for m-products of the subspace
Y[Vk(ĝ), z] ⊂ Ũκ(ĝ)[[z

±1] consists of mutually local Ũκ(ĝ)fields. By the previous lemma it is a
vertex algebra with the above defined structure.

We obtain the following corollary.

Corollary 4.2.2. Given A,B,C ∈ Vk(ĝ) and any integersm,n the following equality holds:

Y[A, z]m(Y[B, z]nY[C, z]) = Y[B, z]n(Y[A, z]mY[C, z]) +
∑
j≥0

(
m

j

)
(Y[A, z]jY[B, z])m+n−jY[C, z]

and the skew symmetry formula

a(z)nb(z) = (−1)n+1
(∑
m≥0

1

m!
∂mz
(
b(z)n+ma(z)

))

Lemma 4.2.4. Let n < 0 denote by Jan(z) :=
1

(−n−1)!∂
−n−1
z Ja(z). Then for any n,m ≥ 0

[Ja−n−1(z),J
b
−m−1(w)] =

(−1)n
1

n!m!

( m∑
k=0

(
m

k

)
∂m−k
w [Ja, Jb](w)∂k+nw δ(z−w) + κ(Ja, Jb)∂n+m+1

w δ(z−w)

)
In particular we have the following expressions for the products Jan(z)kJbm(z) for k ≥ 0.

• It is 0 for k < n or k > n+m+ 1

• It is equal to

(−1)n
k!

n!m!

(
m

k− n

)
∂n+m−k
w [Ja, Jb](w) = (−1)n

(
k

n

)
[Ja, Jb]k−n−m−1(w)

for k ∈ [n,n+m]

• For k = n+m+ 1 it is equal to

(−1)n
(n+m+ 1!)

n!m!
κ(Ja, Jb)
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Proof. The first formula easily follows from taking the derivatives of the equality

[Ja(z), Jb(w)] = [Ja, Jb](w)δ(z−w) + κ(Ja, Jb)∂wδ(z−w)

While the formulas for the positive products Jan(z)kJbm(z) follows from the fact that for any two
mutually local fields a(z), b(z)

[a(z), b(w)] =
∑
k≥0

1

k!

(
a(w)kb(w)

)
∂kwδ(z−w)

The following lemma is the first step to prove proposition 4.2.1. Notice that given a monomial
A ∈ Vk(ĝ) in the Jan the following formula

Y[JbmA, z] = : Y[Jbm|0〉, z]Y[A, z] :

holds by definition only if the monomial JbmA is lexicographically ordered.

Lemma 4.2.5. For any n < 0 for any index a and every A ∈ Vk(ĝ) the following equality holds:

Y[JanA, z] = : Y[Jan|0〉, z]Y[A, z] : = : Jan(z)Y[A, z] :

Proof. By linearity it suffices to prove the statement for A a monomial in the Jbm. We will do this
by induction on d the PBW degree of A.

(d = 1) We have A = Jbm|0〉. If Jan ≤ Jbm we are done by definition of Y. So suppose Jan > Jbm. We
have

Y[JanJ
b
m|0〉, z] = Y[[Ja, Jb]n+m|0〉, z] + Y[JbmJan|0〉, z] = Y[Ja, Jbn+m|0〉, z]+ : Jbm(z)Jan(z) :

Thus we have to prove

: Jan(z)J
b
m(z) : − : Jbm(z)Jan(z) := [Ja, Jb]n+m(z)

and this is a straightforward calculation. And notice that together with Lemma 4.2.4 proves the
equality

Y(Jan|0〉, z)kY(Jbm|0〉, z) = Y((Jan|0〉)k(Jb−1|0〉), z) ∀k ∈ Z

(d =⇒ d + 1) Write A = JbmB for another monomial B so that A = JbmB is lexicographically
ordered and degPBW B = d. Suppose in addition that Jan > Jbm otherwise we are done by definition
of Y.

Denote by A(z) and B(z) the vertex operators Y[A, z] and Y[B, z] for simplicity. We need to
compute

Jan(z)−1
(
Jbm(z)−1B(z)

)
= Jbm(z)−1

(
Jan(z)−1B(z)

)
+
∑
k≥0

(
−1

k

)(
Jan(z)kJ

b
m(z)

)
k−2

B(z) (4.1)

this equality holds by corollary 4.2.2. On the other hand we have

Y(JanJ
b
mB, z) = Y[J

b
mJ
a
nB, z] + Y[[J

a, Jb]n+mB, z]
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since n ≤ −1 by assumption, the monomial [Ja, Jb]n+mB is already ordered therefore the second
term equals to

: [Ja, Jb]n+m(z)B(z) :

this may be checked to be equal to the second term of formula 4.1 using lemma 4.2.4.
Indeed notice that Jan(z)kJbm(z) is of the form Jcl (z) so we have(

Jan(z)kJ
b
m(z)

)
k−2

B(z) = Y(((Jan|0〉)k(Jbm|0〉))k−2B, z)

and therefore the sum above equals to

Y
(
[(Jan|0〉)−1, (Jbm|0〉)−1]B, z

)
= Y([Jan, J

b
m]B, z) = Y([JaJb]n+mB, z)

We are left to compare the terms

Jbm(z)−1
(
Jam(z)−1B(z)

)
and Y[JbmJ

a
nB, z]

in order to prove that they are actually equal we move Jan through the factors of B in order to order
JanB. We obtain JanB = C+Dwhere C is an the lexicographically ordered monomial obtained from
JanB and D is the difference JanB− Cwhich is easily seen to have PBW degree ≤ d.

Y[JbmJ
a
nB, z] = Y[J

b
mC, z] + Y[J

b
mD, z] = : Jbm(z)C(z) : + : Jbm(z)D(z) : =: Jbm(z)Y[JanB, z] :

The second equality follows from the fact that JbmC is an ordered monomial and by the inductive
hypothesis on JbmD. Finally, always by the inductive hypothesis we have

Y[JanB, z] =: Jan(z)B(z) :

we conclude that
Jbm(z)−1

(
Jam(z)−1B(z)

)
= Y[JbmJ

a
nB, z]

and this concludes the proof.

As a corollary we may immediately see that the function Y[· , z] is well behaved with respect to
the operator T .

Lemma 4.2.6. For any A ∈ Vκ(g) the following equality holds

Y[TA, z] = ∂zY[A, z]

Proof. We prove the statement by induction on the PBW degree of A (i.e. its degree as a monomial
in the Jan). The thesis is of true by definition for A = Jan|0〉. Suppose now that it is true for any
monomial of degree ≤ N and consider a monomial JbmAwith degA ≤ N. We have

Y[TJbmA, z] = Y[−mJ
b
m−1A, z] + Y[J

b
mTA, z] = −m : Jbm−1(z)Y[A, z] : + : Jbm(z)∂zY[A, z] :

= ∂z : J
b(z)Y[A, z] := ∂zY[J

b
mA, z]

the second equality follows from the previous lemma while the other are obvious.

We are now ready to prove proposition 4.2.1.
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Proof of proposition 4.2.1. We prove the assertion by induction on the PBW degree of A and B. The
case degA = degB = 1 is a straightforward computation and follows from the first formula of
lemma 4.2.4.

Now assume that we proved the proposition for degA ≤ N and degB ≤ M, we are going to
prove that the proposition for degB ≤ M + 1. We consider therefore ordered monomials A and
JbmBwith degA ≤ N and degB ≤M.

We will write for convenience Y[A, z] = A(z) and Y[B, z] = B(z).
We need to compute

A(z)n
(
Jbm(z)−1B(z)

)
= Jbm(z)−1

(
A(z)nB(z)

)
+
∑
k≥0

(
A(z)kJ

b
m(z)

)
n−1−k

B(z)

By the inductive hypothesisA(z)kJbm(z) = Y(AkJ
b
m|0〉), in addition it can easily be checked that for

k ≥ 0 AkJbm is a sum of monomials of degree ≤ degA, therefore, always thanks to the inductive
hypothesis we have

Y(AkJ
b
m|0〉, z)n−1−kY(B, z) = Y

(
(AkJ

b
m|0〉)n−1−kB, z

)
Summing over k ≥ 0 and using the analogue identity in Vk(ĝ) We obtain

A(z)n
(
Jbm(z)−1B(z)

)
= Jbm(z)−1

(
A(z)nB(z)

)
+ Y([An, J

b
m]B, z)

Now thanks to lemma 4.2.5 we have

A(z)n
(
Jbm(z)−1B(z)

)
= Y(JbmAnB, z) + Y([An, J

b
m]B, z) = Y(AnJ

b
mB, z)

as desired. To conclude the induction it is enough to show that if the statement is true for the cou-
ple (A,B) it is also true for (B.A). To see this we consider the skew symmetry formula combined
with lemma 4.2.6

B(z)nA(z) =
∑
m≥0

1

m!
∂mz (A(z)m+nB(z)) =

∑
m≥0

1

m!
∂mz (Am+nB)(z)

=

(∑
m≥0

1

m!
Tm(Am+nB)

)
(z) = (BnA)(z)

4.2.1 A complete topological algebra associated to a vertex algebra

Now that we proved that the map U(Vκ(g)) → Ũκ(ĝ) is an homomorphism of Lie algebra we are
ready to introduce the complete associative algebra Ũ(V) associated to any vertex algebra V . We
will see that for any Lie algebra g (not necessarily simple) there is an isomorphism

Ũ(Vκ(g)) ' Ũκ(ĝ)

Definition 4.2.3. Let V be any vertex algebra and we define Ũ(V) to be the complete associative
algebra constructed as follows.
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Let U(U(V)) the classical enveloping algebra of the Lie algebra U(V) divided by the two sided
ideal generated by 1 − (|0〉)[−1]) and consider its completion along the left ideals IN generated by
elements of the form A[n] : n ≥ N

Ũ(U(V)) := lim←−U(U(V))/IN
the product may be checked to be continuous under the topology generated by the IN and there-
fore Ũ(U(V)) is a complete topological associative algebra. Finally define

Ũ(V) := Ũ(U(V))/J

where J is the two sided ideal generated by the Fourier coefficients of series of the form

: Y[A, z]Y[B, z] : −Y[A−1B, z]

We have the following proposition

Theorem 4.2.2. Let g be any Lie algebra and let κ be an invariant inner product defined on g. Consider
the affine algebra ĝκ. Note that all the constructions of Ũκ(ĝ) and Vκ(g) make sense for g not necessarily
simple.

Then the homomorphism of Lie algebras introduced above

U(Vκ(g))→ Ũκ(ĝ)

induces an isomorphism
Ũ(Vκ(g)) ' Ũκ(ĝ)

Proof. Since Ũκ(ĝ) is an associative algebra we naturally have an homomorphism U(U(Vκ(g)) →
Ũκ(ĝ), which may easily checked to be continuous following the definitions, it therefore induces
an homomorphism Ũ(U(Vκ(g))→ Ũκ(ĝ).

By proposition 4.2.1 the Fourier coefficients of the series Y : [A, z]Y[B, z] : −Y[A−1B, z] are sent
to 0 and therefore we get a well defined map

Ũ(Vκ(g))→ Ũκ(ĝ)

To show that this is an isomorphism we define an inverse. Note that the map

ĝκ → Ũ(Vκ(g)) Jan 7→ (Ja−1|0〉)[n] 1 7→ (|0〉)[−1] = 1

is easily checked to be an homomorphism of Lie algebras, indeed

[(Ja−1|0〉)[n], (Jb−1|0〉)[m]] =
∑
k≥0

(
n

k

)
(JakJ

b
−1|0〉)[n+m−k] = (Ja0 J

b
−1|0〉)[n+m] + n(J

a
1 J
b
−1|0〉)n+m−1

= ([Ja, Jb]−1|0〉)[n+m] + nκ(J
a, Jb)(|0〉)[n+m−1] = ([Ja, Jb]−1|0〉)[n+m] + nκ(J

a, Jb)δn,−m
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The last equality follows from the fact that (|0〉)[n] = 0 for n 6= −1, indeed in Vκ(g)⊗C((t)) we
have |0〉 ⊗ tn = ∂

(
1
n+1 |0〉 ⊗ t

n+1
)

for n 6= −1.
The homomorphism ĝκ → Ũ(Vκ(g)) induces an homomorphism of associative algebrasU(ĝκ)→

Ũ(Vκ(g)) which is checked to be continuous and which sends 1 → 1 so it induces an homomor-
phism

Ũκ(ĝ)→ Ũ(Vκ(g))

This is easily checked to be the inverse of the homomorphism Ũ(Vκ(g)) → Ũκ(ĝ) indeed
it is quite easy to see that both algebras are topologically generated by elements of the form
(Ja−1|0〉)[n] and Jan respectively. By construction both homomorphism send (Ja−1|0〉)[n] 7→ Jan and
Jan 7→ (Ja−1|0〉)[n] and therefore they are one the inverse of the other.

4.3 The center

In the previous section we developed an efficient method to construct central elements in the
completed enveloping algebra: taking the vertex operators of central elements of Vk(ĝ). We will
therefore focus on the latter center.

The critical value is the only interesting case.

Proposition 4.3.1. The center ζ(Vk(ĝ)) is trivial for k 6= kc (i.e. it is spanned by |0〉).

Proof. Consider the normalized Sugawara operators S̃ and a central element A ∈ ζ(Vk(ĝ)). By
definition of central element we have SnA = 0 for all n ≥ −1 (recall the shift on the indices in the
definition of the Sugawara operators). In particular

S0A = degA = 0

Therefore A must be a multiple of |0〉 since the space Vk(ĝ)0 is one dimensional and spanned by
|0〉.

We will focus therefore on the critical level k = kc. Since in all the other cases the center is
trivial we lighten our notation defining ζ(g) := ζ(Vkc(ĝ)).

In the case of Vk(ĝ) there is a much more convenient description of the center:

Proposition 4.3.2. For any k ∈ C
ζ(Vk(ĝ)) = Vk(ĝ)

g[[t]]

Proof. The inclusion ζ(Vk(ĝ)) ⊂ Vk(ĝ)g[[t]] is obvious since by hypothesis every central element S
satisfies JanS = 0 for all n ≥ 0. To show the other inclusion consider an invariant element S and
consider the centralizer Z(S) ⊂ Vk(ĝ) which is a vertex subalgebra of Vk(ĝ). Since by hypoth-
esis Z(S) contains all the Ja−1|0〉 and since the latter elements generate Vk(ĝ) in the sense of the
reconstruction theorem we see that it must be

Z(S) = Vk(ĝ)

So S is actually central.
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This is very nice. To compute ζ(Vkc(g)) we will use the approach of graded algebras. The ver-
tex algebra Vk(ĝ) carries a natural filtration induced by the PBW filtration onU(ĝk), the associated
graded space is well known and so is its space of invariants this will allow us to put an upper
bound to the space Vkc(g)g[[t]].

Let’s start with a definition regarding filtered vertex algebras.

Definition 4.3.1. Let V be a vertex algebra. A filtration on V is a sequence of subspaces V≤i for
i ≥ 0 such that:

• V≤i is a filtration on the vector space V , so V≤i ⊂ V≤i+1 and V = ∪V≤i;

• |0〉 ∈ V≤0

• The subspaces V≤i are T -invariant;

• For A ∈ V≤i and B ∈ V≤j all the products AkB for k ∈ Z lie in V≤i+j

If V is a filtered vertex algebra the associated graded space (set V≤−1 = 0)

grV :=
⊕
i≥0

V≤i/V≤i−1

has a natural structure of a vertex algebra.

Proposition 4.3.3. The PBW filtration on Vk(ĝ) defines a structure of filtered vertex algebra on Vk(ĝ).
The actions of DerO and g[[t]] are compatible with this filtration (i.e. g[[t]] · Vk(ĝ)≤i ⊂ Vk(ĝ)≤i).

Moreover the associated graded vertex algebra is abelian and isomorphic to

grVk(ĝ) ' Sym
(g((t))
g[[t]]

)
both as abelian vertex algebras as g[[t]] modules and as DerO modules. Here the derivation of the space
on the right is ∂t while the structure of g[[t]] module is the one induced by the natural action of g[[t]] on
g((t))/g[[t]].

Proof. This is a simple verification.

It is not hard to see that if we denote by Symb(A) ∈ V≤i/V≤i−1 for A ∈ V≤i \ V≤i−1 that for
any x ∈ g[[t]]

Symb(x ·A) = x · Symb(A)

and therefore

gr ζ(Vk(ĝ)) ⊂ Sym
(
g((t))

g[[t]]

)g[[t]]

(4.2)

To study the right hand side of this formula which we denote

Inv g∗[[t]] := Sym

(
g((t))

g[[t]]

)g[[t]]

to justify this notation, but more importantly to compute Inv g∗[[t]] we are going need the
formalism of Jet schemes.
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4.4 Jet Schemes

Definition 4.4.1. Let X ∈ SchC be any scheme over C. We define functors of C-algebras

JnX(R) := X(R[t]/t
n)

JX(R) := X(R[[t]])

JX is be called the jet scheme of X, while JnX is called the n-th jet scheme of X (we will justify this
nomenclature with the following proposition). We often denote by X[[t]] the set of C points of JX:

X[[t]] := JX(C) = X(C[[t]])

To a map f : X→ Y of C-schemes we can associate natural maps Jnf : JnX→ JnY and Jf : JX→
JY, these associations are functorial. There are natural maps

πm,n : JnX→ JmX for n ≥ m
πm : JX→ JmX

The map JX → JnX is a cone with respect to the various maps JnX → JmX. JX is actually the
projective limit of the JmX.

JX = lim←− JnX
Proposition 4.4.1. If X is of finite type over C then JnX and JX are representable. It turn out that JnX is
of finite type for any n.

The functoriality of jet schemes is fundamental when talking about algebraic groups and group
actions on schemes. Let G be an algebraic group over C. Recall that the groups we start with are
always affine and of finite type but we are now going to consider algebraic groups which are not of
finite type. Then it is quite clear the JnG are algebraic groups of finite type and JG is an algebraic
group.

If X is a scheme with an action of an algebraic group G then JnX comes with a natural action of
JnGwhile JX is equipped with a natural action of JX.

The C points of the Lie algebras Lie(JnG) and Lie(JG) are given by g ⊗ C[t]
tn

= g[t]/tn and
g⊗ C[[t]] = g[[t]] respectively, both equipped with the bracket induced by the bracket on g.

Since the spaces JnX and JX are equipped with a JnG and a JG action respectively the rings
C[JnX] and C[JX] result equipped with an action of g[t]/tn and g[[t]] respectively.

As an example consider first the case in which X = AN then

JkX(R) = AN(R[t]/tk) =
{
(

−k∑
n=−1

xi,nt
−n−1)i : xi,n ∈ R, i = 1, . . . ,N

}
' RNk

J(X)(R) = AN(R[[t]]) =
{
(
∑
n<0

xi,nt
−n−1)i : xi,n ∈ R, i = 1, . . . ,N

}
'
∏
n<0

RN

Therefore we have JnAN ' SpecC[xi,n]i=1,...,N;−k≤n<0 and JAN ' SpecC[xi,n]i=1,...,N;n<0.
This will be our standard notation.

For a morphism:
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AN AM

SpecC[x1, . . . , xN] SpecC[y1, . . . , yM]

f

(P1,...,PM)

Where we read f as (P1, . . . , Pm): the morphism induced by yi 7→ Pi(x). The induced mor-
phism between the jet schemes may be described as follows.

Consider the formal series it t with coefficients in C[xi,n]i=,1...,N,n<0 defined by xi(t) :=∑
n<0 xi,nt

−n−1 and the formal substitution

P(x) 7→ P(x(t)) =:
∑
n<0

Pi,n(x)t
−n−1

where we are using a slight abuse of notation, by P(x) we mean for instance P(x1, . . . xN) while
by Pi,n(x) is a polynomial in the xi,n.

Proposition 4.4.2. The morphism associated to J(P1, . . . , PM) between the jet spaces SpecC[xi,n] and
SpecC[yi,n] is the morphism induced by the map of rings yi,n 7→ Pi,n where Pi,n is the polynomial
defined above.

Proof. This is just a verification using the definitions.

We conclude our presentation of jet schemes with a technical but very useful lemma, which we
will not prove.

Lemma 4.4.1. Let f : X → Y be a morphism between schemes of finite type over C. Suppose that f is
formally smooth and surjective (on C points). Then the morphisms Jnf : JnX→ JnY and Jf : JX→ JY are
formally smooth and surjective (on C points).

4.4.1 Action of AutO on Jet schemes

Consider a scheme X as always as a functor of C algebras. There is a natural action of the group
AutO on the jet of X:

AutO(R)× JX(R) = Aut cont(R[[t]])× X(R[[t]])→ X(R[[t]]) (ρ, x(t)) 7→ X(ρ)(x)

this induces an action of AutO(C) and DerO(C) and the algebra of functions on JX.

4.5 Description of Inv g∗[[t]]

We are now ready to give a complete description of the space Inv g∗[[t]] = Sym
(
g((t))/g[[t]]

)g[[t]]
but first we have to reinterpret the algebra Sym

(
g((t))/g[[t]]

)
as the algebra of functions on a

geometric space, here jet schemes will come in the picture.
Let g∗ be the scheme associated to the dual vector space of the Lie algebra g. Pick a basis Ja of

g and denote by Ja the linear functional on g∗ defined by evaluating ϕ ∈ g∗ on the Ja. So

Ja(ϕ) := ϕ(Ja)
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It is clear that the elements Ja form basis of g∗∗ and that

C[g∗] = C[Ja]

With the notations we used so far we have that C[Jg∗] = C[Jan]n<0, furthermore notice that
Sym

(
g((t))/g[[t]]

)
= C[Jan]n<0. This notation is more than a mere coincidence.

Indeed consider the linear map

g((t))/g[[t]]→ (
g∗[[t]]

)∗
ξ(t) 7→ (

ϕ(t) 7→ ∫〈ϕ(t), ξ(t)〉dt)
which identifies for instance Jan with n < 0 with the linear functional on g∗[[t]] defined by∑
n<0ϕnt

−n−1 7→ ϕn(J
a). This is a linear continuous functional on the vector space g∗[[t]], which

consists in exactly the C points of the scheme Jg∗.
These descriptions suggest the following proposition.

Proposition 4.5.1. The map

C[Jg∗]→ Sym
(
g((t))/g[[t]]

)
Jan 7→ Jan

is an isomorphism of algebras and of g[[t]] and DerO(C) modules. Where the action of g[[t]] on C[Jg∗] is
induced through the jet functor as described before by the coadjoint action of G on g∗, while the action of
DerO(C) is the one induced by the action of AutO on Jg∗.

Proof. The fact that it is an isomorphism of algebra is clear from the above descriptions. To see that
it commutes with the action g[[t]] notice that since G acts on g∗ with the coadjoint action g acts on
C[g∗] = Sym g through the adjoint action. From these premises, using the definition of jet schemes
and of the induced action it is not difficult to conclude the the isomorphism is g[[t]] equivariant.
An analogous verification proves DerO(C) invariancy as well.

Corollary 4.5.1. The isomorphism Sym (g((t))/g[[t]]) ' C[Jg∗] induces an isomorphism on the space of
invariants

C[Jg∗]g[[t]] ' Sym
(
g((t))/g[[t]]

)g[[t]]
= Inv g∗[[t]]

This also justifies the notation Sym
(
g((t))/g[[t]]

)g[[t]]
= Inv g∗[[t]].

Now that we described or ring of invariants in a geometric way we can give the desired de-
scription of Sym

(
g((t))/g[[t]]

)g[[t]]. We consider first the finite dimensional case.
As we saw in the preliminaries the space of polynomial invariants of C[g∗] is a free polynomial

algebra, generated by l = dim h homogeneous polynomials P1, . . . , Pl:

C[g∗]G(C) = C[g∗]g(C) = C[P1, . . . , Pl] =: Inv g∗

s There is more, consider P := SpecC[Pi] and consider the morphism induced by the inclusion
C[Pi] ↪→ C[g∗]

p : g∗ → P
The following theorem is due to Kostant [Kos63].
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Theorem 4.5.1. Let g∗reg be the open subscheme of g∗ defined by

g∗reg := {x ∈ g∗ : dim gx = l}

then the map obtained by restriction
p : g∗reg → P

is smooth (and hence formally smooth), surjective and its fibers are single G orbits. So p : g∗reg → P is a
geometric quotient. In particular

C[g∗reg]g(C) = p#C[P]

Using the formalism of jet schemes we are now ready to pass from the finite dimensional case
to the computation of C[Jg∗]g[[t]].

Theorem 4.5.2. The map induced by Jp : Jg∗ → JP on the ring of functions

Jp# : C[JP]→ C[Jg∗]

is injective and induces an isomorphism.

C[JP] = C[Jg∗]g[[t]]

In particular if we take Pi as the polynomials in C[g∗] which generate as above the free subalgebra C[P] then
we have

C[Jg∗]g[[t]] = C[Pi,n]i=1,...,l;n<0
where the Pi,n are defined as in proposition 4.4.2.

Proof. We will prove first the ‘finite dimensional’ case.

Lemma 4.5.1. For every n ≥ 0 the map induced by Jnp : Jng
∗
reg → JnP is a geometric quotient with

respect to the action of JnG.
In particular since all schemes appearing are of finite type

C[Jng∗reg]g[t]/t
n

= C[JnP]

where we identify C[JnP] with its image under Jnp# which is injective.

Indeed since p : g∗reg → P is smooth by theorem 4.5.1 we obtain applying lemma 4.4.1 that
Jng
∗
reg → JnP is smooth and surjective. For the same reasons the map

JnG× Jng∗reg → Jng
∗
reg ×JnP Jng∗reg

is surjective, therefore the geometric fibers of Jnp consist in single JnG orbits and we may apply
theorem 2.2.2 to find out that Jnp : Jng

∗
reg → JnP is again a geometric quotient.

Corollary 4.5.2. The injective map

Jnp
# : C[JnP]→ C[Jng∗]

induces an isomorphism
C[JnP] = C[Jng∗]g[t]/t

n
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Since the composition C[JnP]→ C[Jng∗]→ C[Jng∗reg] is injective the first map must be injective
as well, in addition all functions coming from JnP are automatically JnG invariant and therefore
g[t]/tn invariant as well. So

C[JnP] ⊂ C[Jng∗]g[t]/t
n

To show the other inclusion consider a g[t]/tn invariant function on Jng∗. Its restriction to Jng∗reg
which is an open subscheme of Jng∗ is still g[t]/tn invariant and by the lemma it belongs to C[JnP].

We are now ready to prove the statement of the theorem. Note first the following remark,
which follows from the description we gave of the ring of functions on jet schemes.

Remark 4.5.1. Any regular function f : JAN → A1 comes from a regular function f̃ : JnAN → A1
under the injective morphism π#

n, induced by the natural map πn : JAN → JnAN.

The map Jp# is injective. Indeed consider a regular function f ∈ C[JP] which is sent to 0 ∈
C[Jg∗] under Jp#. By the above remark there exists a positive integer n such that f comes from a
function f̃ : JnP → A1. Since the following diagram is commutative

Jg∗ Jng
∗

JP JnP

πn

JnpJp

πn

and since Jnp# is injective we must have f̃ = 0 and hence f = 0.
In addition any function which is the pullback of a function on JP is automaticallyG invariant.

Therefore we have
C[JP] ⊂ C[Jg∗]JG ⊂ C[Jg∗]g[[t]]

To show the other inclusion consider a function f ∈ C[Jg∗]g[[t]] and pick f̃ : JnC[Jng∗] → A1
such that f = π#

nf̃. We would like to show that f̃ is g[t]/tn invariant. Consider the commutative
diagram

Jg× Jg∗ T(JG× Jg∗) T(Jg∗) TA1 A1

Jng× Jng∗ T(JnG× Jng∗) T(Jng
∗) TA1 A1

T(Jµ) Tf
d
dε

πn

T(Jnµ) Tf̃ d
dε

==πnπn

Notice that the map Jg×Jg∗ → Jng×Jng∗ is surjective on C points. Therefore given an element
(ξ, x) ∈ Jng × Jng∗ we may pick (Ξ, X) ∈ Jg × Jg∗ which maps to (ξ, x), by hypothesis the upper
row, evaluated on (Ξ, X) is equal to 0 and by commutativity the lower row must be 0 evaluated on
(ξ, x).

This implies that f̃ is g[t]/tn invariant, since we proved that on C points ξ · f̃ : Jng∗(C)→ A1(C)
is 0 and Jng∗ is of finite type. Now since f̃ is g[t]/tn invariant, by the corollary above must belong

to C[JnP] and consequently we have f ∈ C[JnP] ⊂ C[JP].
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We conclude this section calculating the character of C[Jg∗]g[[t]] under the action of L0 = −t∂t.
Recall that this action intertwines with the isomorphism

C[Jg∗] ' Sym
(
g((t))/g[[t]]

)
In particular we have L0(Jan) = nJan. Starting from this it is quite easy to compute the char-

acter of the Pi,n. Pi is an homogeneous polynomial of degree di + 1. Therefore the n-th coefficient
of

P(t) = P(Ja(t)) =
∑
n<0

Pi,nt
−n−1

(i.e. Pi,n) will be a finite sum of products of the form Ja1n1 . . . J
adi
ndi

with
∑
nj = −n+ di.

Proposition 4.5.2. The character of Inv g∗[[t]] is given by

ch(Inv g∗[[t]]) =

l∏
i=1

∏
ni≥di+1

1

(1− qni)

4.6 ζ(g) and Zκ(ĝ)

The following theorem will be our goal for the rest of the thesis, therefore we will postpone its
proof, as the definition of the space of Opers, until the end of the thesis.

Theorem 4.6.1. The center of the vertex algebra ζ(g) is isomorphic in a (AutO, DerO) equivariant way
to the algebra of regular functions on the space of LG Opers on the disc: OpLG(D).

Its character is given by the formula

ch(ζ(g)) =

l∏
i=1

∏
ni≥di+1

1

(1− qni)

We will see that actually the two statements are actually separate and that that the second one
implies the first. We state them in one theorem here just for convenience.

In particular the proof of the second statement follows from the fact that gr (ζ(g)) = Inv g∗[[t]]
this is the fact that we are actually use the most.

The algebra of functions on the space of Opers is a free polynomial algebra in the variables vi,n

ζ(g) = C[vi,n]i=1,...,l;n<0
To proceed with our description of the center of the completed enveloping algebra we need

first a some little geometric definitions.

4.6.1 Loop schemes

Definition 4.6.1. Given a C scheme X (or a functor of C-algebras) we define LX as the functor of C
algebras

LX(R) := X(R((t)))

while to a morphism f : R1 → R2 we first associate Lf : R1((t)) → R2((t)) which is naturally de-
fined as

∑
i rit

−i−1 7→∑i f(ri)t
−i−1, and then we associate the induced morphism X(R1((t))) →

X(R2((t)). Notice that LX carries an action of AutO in the same way JX does.
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Given any scheme X the functor LX is rarely a scheme, but in the situations we are interested
in it will often be an ind-scheme.

We consider the case we are most interested with, which is also the simplest one: X = Am.
Define for N ≥ 0 subfunctors

LNAm(R) :=
{
(x1(t), . . . , xm(t) ∈ Am(R((t))) : xi(t) ∈ t−NR[[t]]

}
It is easy to see that

LAm = lim−→LNAm
Denote by xi,n the regular function on LAm (which we recall to be defined as a natural trans-

formation LAm → A1) which on R points

LAm(R) 3 (
∑
j

r1,jt
−j−1, . . . ,

∑
j

rm,jt
−j−1) 7→ ri,n ∈ A1(R)

The ring of regular functions on LAn, is easily seen to be described as the projective limit of the
rings C[LNAm] which is isomorphic to

C[LAm] = lim←− C[xi,n]i=1,...,m;n∈Z

(xi,n)n≥N

Moreover is quite clear that the map LNAm(R)→ JAm(R) which sends

(
∑
n<N

ri,nt
−n−1)i 7→ (

∑
n<0

ri,n+Nt
−n−1)i

is a functorial isomorphism. So LNAm is an affine scheme for every Nwhich is isomorphic to

SpecC[xi,n]i=1,...,m;n≤N−1

Consider now a polynomial function P = P(x1, . . . , xm) : Am → A1. We want to describe
the induced regular function LP : LAm → LA1 in particular its composition with the coordinate
function xn : LA1 → A1 (defined as before) which we call Pn.

Consider our usual notation xi(t) :=
∑
n∈Z xi,nt

−n−1 and let

P(t) := P(x1(t), . . . , xm(t)) =
∑
n∈Z

Pnt
−n−1

Note that here there is a slight ambiguity since in the ‘definition’ of the Pn infinite sums occur.
The following lemma resolves this ambiguity.

Lemma 4.6.1. The Pn above are well defined as elements of the completed algebra generated by the variables
xi,m

Pn ∈ lim←− C[xi,n]i=1,...,m;n∈Z

(xi,n)n≥N

therefore Pn is a well function in C[LAm] and it corresponds exactly to the composition xn ◦ LP.

Proof. These are just verifications that directly follow from the definitions.
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We are now going to investigate what happens when we restrict the functions Pn on the sub-
functors LNAm.

Remark 4.6.1. When we restrict Pn to the subspace LNAm all the functions xn with n ≥ N vanish
(since they are 0 on that space). So in the computation of the Pn we can just make the substitution
xi 7→ xi,N(t) =

∑
n<N xit

−n−1 and compute the coefficients of P(t) = P(x1,N(t), . . . , xm,N(t)).
Note that when N > 0 and P is homogeneous of degree d the only Pn which we know for sure

that are identically 0 are those for n > Nd, even if other cancellations may occur a priori.

4.6.2 Back to the center

We turn now to our case of interest: the one where X = g∗. Note that g∗ ' Adim g as a C scheme so
all we have done so far applies to this case as well. We group what we will need in what follows
in the following lemma.

Lemma 4.6.2. The group JG acts in a natural way on all spaces LNg∗ and Lg. In addition the isomorphisms
introduced above

· tn : LNg
∗ → Jg∗

intertwine with this action. In particular the induced isomorphisms on the ring of functions intertwine with
the action of JG(C) = G[[t]] and of g[[t]].

Let Pi ∈ C[g∗] be the free generators of the algebra of invariant functions. And let the Pi,n be the regular
functions on Lg∗ defined above. We have

C[LNg∗]g[[t]] = C[Pi,ni ]ni≤N(di+1)

and this is a free polynomial algebra. Here the Pi,ni are the functions defined above restricted to LNg∗.

Proof. The fact that JG acts on LNg∗ comes from the fact that LG acts on Lg∗ and JG is a subgroup
of which preserves the space LNg∗. This last affirmation may be proved for instance viewing G
as a matrix group. The fact that the isomorphism above intertwines with the action of G may be
proved viewing G as a matrix group as well.

The last properties follows from the fact that the isomorphism · tN intertwines with the action
of JG and from the fact that under the isomorphism above Pi,n is sent to Pi,n+Ndi

We are now ready to find out what is the relation of these algebras of functions with the en-
veloping algebra. Recall that by definition of Ũκ(ĝ) we have

Ũκ(ĝ)/IN =
(
U(ĝk)/(1− 1)

)
/IN

where in both cases IN is the left ideal generated by tNg[[t]].

Lemma 4.6.3. The PBW filtration on Ũκ(ĝ) induces a filtration on Ũκ(ĝ)/IN, the associated graded space
gr (Ũκ(ĝ)/IN) has a natural structure of commutative C algebra which comes from the structure of algebra
on Ũκ(ĝ).

In addition there is an isomorphism of C algebras

gr (Ũκ(ĝ)/IN) ' C[LNg∗]

which intertwines with the action of g[[t]] on both spaces.
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Proof. Consider the surjective morphism

gr (U(ĝk))→ gr (Ũκ(ĝ)/IN)

which arises from the quotient morphism U(ĝk) → Ũκ(ĝ)/IN which preserves the PBW filtration
on both spaces. Surjectivity follows from the fact that the PBW filtration on the quotient is defined
exactly as the image of the filtration of the above morphism.

Is not difficult to see that gr (U(ĝk)) ' Sym g((t)) as an algebra: the commutation relations
of element in ĝk differ from the ones in g((t)) but the additional terms produce terms with lower
degree and a proof analogous to the one of the classical PBW theorem proves the assertion.

The kernel of the above map is easily seen to be the ideal generated by tNg[[t]], so gr (Ũκ(ĝ)/IN)
has a natural structure of commutative algebra and it is isomorphic to

gr (Ũκ(ĝ)/IN) '
Sym g((t))

(tNg[[t]])

Finally, similarly to proposition 4.5.1 the latter space is isomorphic, in a g[[t]] equivariant way,
to C[LNg∗].

Next consider the isomorphism presented at the beginning of the section

gr (ζ(g)) = Inv g∗[[t]] = C[Pi,n]i=1,...,l;n<0

and pick elements Si ∈ ζ(g) such that SymbSi = Pi,−1. This means that Si, up to an element of
Vkc(g)≤1, is equal to the polynomial Pi where we make the formal substitution Ja 7→ J−1 applied
to |0〉. This leads to the following fact.

Lemma 4.6.4. For any i = 1, . . . , l any N > 0 and any n ∈ Z the image of

Φ((Si)[n]) ∈ Ũκ(ĝ)→ Ũκ(ĝ)/IN

has symbol in gr (Ũκ(ĝ)/IN) = C[LNg∗] equal to Pi,n ∈ C[LNg∗].

Proof. This follows from the definitions. Recall thatΦ((Si)[n]) was defined as then-th coefficient of
the sum of normally ordered products defined by Y[Si, z]. Considering its symbol in gr (Ũκ(ĝ)/IN)
we may forget about the ordering (as the latter algebra is commutative) and put all terms of the
form Jan with n ≥ N equal to 0. Eliminating the lower degree term we find out that the expression
we obtain is exactly equal to the one of the polynomials Pi,n which was obtained with the formal
substitution Ja 7→ Ja(t) =

∑
n<N J

a
nt

−n−1.
This concludes the proof.

Proposition 4.6.1. Let IN be the left ideal in Ũκ(ĝ) generated by tNg[[t]]. Then the quotients of the center
by these ideals (which restricted to Zκ(ĝ) are bilateral) is given by

Zκ(ĝ)

Zκ(ĝ) ∩ IN
' C[Si,[n]]i=1,...,l;N≤N(di+1)

in addition, this is a free polynomial algebra.
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Proof. Note that Zkc(ĝ) ⊂ Ũkc(ĝ)g[[t]]. Since the operation of taking the symbol commutes with
the action of g[[t]] on the spaces Ũkc(ĝ)/IN and gr

(
Ũkc(ĝ)/IN

)
. We have the following chain of

inclusions:

gr

(
Zkc(ĝ)

Zkc(ĝ) ∩ IN

)
⊂ gr

(( Ũkc(ĝ)
IN

)g[[t]]) ⊂ gr( Ũkc(ĝ)
IN

)g[[t]]

= C[Pi,ni ]i=1,...,l;ni≤N(di+1)

We know, from lemma 4.6.4 that for each Pi,n there is a central element, namely Φ(Si,[n]), whose
symbol is exactly Pi,n. All the above inclusions are therefore equalities and

gr

(
Zkc(ĝ)

Zkc(ĝ) ∩ IN

)
' C[Pi,ni ]i=1,...,l;ni≤N(di+1)

The thesis follows from the following general fact.

Lemma 4.6.5. Let A be a commutative C algebra. Suppose A carries a filtration such that the associated
graded algebra is a free polynomial algebra.

grA ' C[xi]i∈I

Then, taken any ai ∈ A such that Symbai = xi, A is a free polynomial algebra generated by the ai.

This proposition leads to this first description of the center of the enveloping algebra.

Corollary 4.6.1. Consider Si,[n] ∈ Zkc(ĝ) as above. Then the Si,[n] are algebraically independent. More-
over Zkc(ĝ) is the completion of its free polynomial subalgebra C[Si,[n]]i=1,...,l;n∈Z by the ideals

(Si,[ni])i=1,...,l;ni>N(di+1)

Proof. Any algebraic relation between the Si,[ni] must contain a finite number of terms. Therefore
we may consider an N sufficiently large such that all the terms appearing are of the form Si,[ni]
with ni ≤ Ndi. Consider this algebraic relation to the quotient

Zkc(ĝ)

Zkc(ĝ) ∩ IN

we see that the algebraic expression itself (i.e. the polynomial in the Si,[ni]) must be 0, since the
quotient is the free polynomial algebra described above. This proves that the elements Si,[n] are
algebraically independent.

The second statement easily follows from the fact that Zkc(ĝ) is the projective limit of the quo-
tients

Zkc(ĝ)

Zkc(ĝ) ∩ IN
which are isomorphic to the subalgebra of the Si,[n] modulo the ideal generated by

(Si,[ni])i=1,...,l;ni>N(di+1)
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Corollary 4.6.2. The homomorphism
U(ζ(g))→ Zκc(ĝ)

induces an isomorphism
Ũ(ζ(g)) ' Zκc(ĝ)

Proof. Consider the DerO equivariant isomorphism gr (ζ(g)) = Inv g∗[[t]] and as before let Si ∈
ζ(g) be elements such that SymbSi = Pi,−1 it follows by construction that SymbSi,n|0〉 = Pi,n for
every n < 0 and therefore

ζ(g) = C[Si,n|0〉]i=1,...,l,n<0
as a commutative algebra. In particular ζ(g) ' V0(S) for S = ⊕iCSi an abelian algebra of dimen-
sion l. Now by Theorem 4.2.2 we have

Ũ(ζ(g)) ' lim←− C[Si,n]i=1,...,l,n∈Z
(Si,n)n>N

following the definitions and by the description we gave above of the center as the completion of
its subalgebra generated by the Si,[n] it easily follows that the induced map

Ũ(ζ(g))→ Zκc(ĝ)

is an isomorphism.

Finally we state the following lemma, which can be found in [Fre07, Lemma 4.3.5]

Lemma 4.6.6. The completed algebra Ũ(C[OpLG(D)] is isomorphic in a (AutO, DerO) equivariant way
to the algebra of regular functions on the space of LG-Opers on the pointed disc.

Ũ(C[OpLG(D)) = C[OpLG(D∗)]

From which easily follows the description of the center of the completed enveloping algebra
we wanted to prove.

Theorem 4.6.2. The center of the completed enveloping algebra at the critical level Zκc(ĝ) is isomorphic in
a (AutO, DerO) equivariant way to the algebra of functions on the space of LG-Opers on the pointed disc

Zκc(ĝ) = C[OpLG(D∗)]
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Chapter 5

Free field realization

In this chapter we begin with the proof of the description of the center of the vertex algebra Vκc(g).
A pivotal role in the proof will be the construction of certain ĝκc modules, called the Wakimoto
modules, they were first defined by Wakimoto [Wak86] for the algebra ŝl2κc and then generalized
to an arbitrary simple algebra g by Feigin and Frenkel [FF88].

The exposition, as well as the theorems themselves, will be carried out using the vertex algebra
language. In order to define the Wakimoto modules we need to construct what is called a free
field realization of the vertex algebra Vκ(g) that is to say a vertex algebra homomorphism

Vκ(g)→ V

where V is a ‘free field’ algebra: a vertex algebra which is generated (in the sense of the reconstruc-
tion theorem) by fields aα(z) whose commutator is constant (i.e. its not a function of other non
constant fields). In this chapter we describe in detail the free field realization, while in the next

chapter we will describe Wakimoto modules and their properties.

5.1 The finite dimensional case

We start with our usual simple Lie algebra g. Let h be a maximal toral subalgebra of g and let b+
and b− the upper and lower Borel subalgebras induced by a choice of a basis ∆+ for the set of roots
Φ. Let n+ and n− be the upper and lower Borel subalgebras: n± = [b±, b±].

g = n+ ⊕ h⊕ n−

We denote by (eα)α∈Φ ((fα)α∈Φ resp.) a standard basis of n+ (resp. n−) such that [h, eα] =
α(h)eα (resp. [h, fα] = −α(h)fα for any h ∈ h.

LetG be the connected simply connected Lie group associated to g. To the above decomposition
of g are associated various subgroups of G: the maximal toral subgroup H of G, the upper Borel
subgroup H ⊂ B+ ⊂ G and the lower Borel subgroup H ⊂ B− ⊂ G. Their Lie algebras are
respectively h, b−, b+. Finally let N+ and N− be the unipotent subgroups of G associated to the
nilpotent Lie subalgebras n+ and n−.
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We consider the flag variety G/B−, it has a unique open B+ orbit

U := N+ · [1] ⊂ G/B−

The left multiplication by elements of G induces an action

G×G/B− → G/B−

which induces an action by vector fields

g→ Vect(U) = DerC[N+]

We will keep in mind that U ' N+, freely interchanging them, we list here some useful re-
marks.

Remark 5.1.1. Identifying U = N+ the action of g on Vect(N+) satisfy the following properties:

• The action of n+ coincides with the action of n+ on the ring of functions C[N+] induced by
the left multiplication

N+ ×N+ → N+

• The action of h corresponds to the action of h on the ring C[N+] induced by the adjoint action

H×N+ → N+ h · x = hxh−1

• The exponential map n+ → N+ is an isomorphism therefore N+ (and hence U) is an affine
space ' A|Φ+| where Φ+ is the set of positive roots. The exponential map commutes with
the adjoint action of H, we will call a system of coordinates (yα)α∈Φ+

homogeneous if for
any h ∈ h

h · yα = −α(h)yα

We will only consider homogeneous system of coordinates.

Proposition 5.1.1. One can choose a system of homogenous coordinates yα such that the action of n+ on
C[N+] = C[yα] satisfies

eα · yα = 1 eα · yβ = 0 unless α ≤ β

(Recall that α ≤ β if and only if β− α is a positive root). In particular we may write

eα =
∂

∂yα
+
∑
β>α

Pαβ(y)
∂

∂yβ

for some Pαβ(y) ∈ C[yα]. The polynomials Pαβ have weight −β + α, in particular they cannot contain the
variable yβ.

Proof. Consider any homogeneous system of coordinates yα. It is clear that in the weight decom-
position of C[N+] only negative weights appear

C[N+] =
⊕

λ∈−Z+Φ+

C[N+]λ ⊕ C1
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Consider now α ∈ Φ+ we want to prove that eαyβ = 0 unless β ≤ α. Consider the action of h on
eαyβ, we have

h · eαyβ = [h, eα]yβ + eα(−β(h)yβ) = (α− β)(h)eαyβ

so it has weight α − β, this lies in −Z+Φ+ ∪ {0} if and only if β ≥ α. In addition if α = β we
find that eαyα has weight 0 so it must be a multiple of 1. It is not 0 by the sl2-case (see the next
example) so the variables yα may be re-scaled in order to get

eα · yα = 1 eα · yβ = 0 unless α ≤ β

To check that the polynomials Pαβ have weight −β+ αwe just notice that for any h ∈ h

α(h)

(
∂

∂yα
+
∑
β>α

Pαβ(y)
∂

∂yβ

)
= [h, eα] = α(h)aβ +

∑
β>α

(
h · Pαβ(y) + β(h)Pαβ(y)

) ∂

∂yβ

We give as an example an explicit exposition of the sl2 case.

Example 5.1.1 (sl2). In the case of sl2 and the its group SL2 we have

G/B− ' P1 and U = A1 = {[u,−1]} ⊂ P1

we have the following (
1 −ε
0 1

)
·
[
u
−1

]
=

[
u+ ε
−1

]
e 7→ ∂

∂u(
1− ε 0
0 1+ ε

)
·
[
u
−1

]
=

[
u(1− ε)
−1− ε

]
=

[
u(1− 2ε)

−1

]
h 7→ −2u

∂

∂u(
1 0
−ε 1

)
·
[
u
−1

]
=

[
u

−1− uε

]
=

[
u(1− uε)

−1

]
f 7→ −u2

∂

∂u

We introduce a very convenient notation which we will extensively use in what follows: we
denote by a∗α := yα and by aα := ∂

∂yα
.

By the considerations made so far, choosing an homogeneous coordinate system a∗α such that
eαa

∗
α = 1we obtain the following formulas for the action of g on N+

ei 7→ aαi +
∑
β>αi

Piβ(a
∗)aβ

hi 7→∑
β

−β(hi)a
∗
βaβ

fi 7→∑
β

Qiβ(a
∗)aβ

The isomorphism U ' N+ allows us to consider the action of right multiplication of N+ on U.
This induces a anti-homomorphism of Lie algebras
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n+ → Der(N+)

we will write eRα for the operator on C[N+] associated to −eα with this right action, so that the
map eα 7→ eRα is a Lie algebra homomorphism. This action will be very useful to us and therefore
we will keep considering alongside the left action of g.

Remark 5.1.2. We list a couple of useful remarks concerning this right action:

• The right action of n+ commutes with the left action of n+:

[eα, e
R
β] = 0

this follows from the fact that the action of left multiplication and the action of right multi-
plication on N+ commute;

• The action of right multiplication on N+ is part of a bigger action of B+ constructed consid-
ering the isomorphism N+ ⊂ UR ⊂ B− \ G, the induced right action of h is exactly ‘−’ the
action we already knew. In particular

[h, eRα] = α(h)e
R
α

and therefore the operators eRα have a description similar to the operators eα:

eRα =
∂

∂yα
+
∑
β>α

PR,αβ (y)
∂

∂yβ

5.1.1 C[N+] as a Verma module

We describe the g module C[N+] defined above as a coinduced module.

Definition 5.1.1. Let χ ∈ h∗ be a character. Consider the action of b− on Cχ where h acts as χwhile
n− acts like 0. We define the Verma module as the induced module

Mχ := Ind g
b−

Cχ = U(g)⊗U(b−) Cχ

it is isomorphic, both as a vector space and a n+ module, to U(n+).
Note that the the algebra U(n+) has a decomposition induced by the action of h:

U(n+) =
⊕
γ∈Q+

U(n+)γ

where Q+ = Z+Φ+ and U(n+)γ = {x ∈ U(n+) : h · x = γ(h)x for any h ∈ h∗}.
We define the contragradient Verma moduleM∗χ as

M∗χ := Coind g
b−

Cχ = HomresU(b−)(U(g),Cχ)

where HomresU(b−)(U(g),Cχ) is the space of U(b−) linear maps U(g)→ Cχ which are supported on
finitely many factors of the direct sum

U(g) =
⊕
γ∈Q+

U(b−)⊗U(n+)γ
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Verma modules are described easily, thanks to their definition. They satisfy a lot of useful
properties. For instance for any g module Nwe have

Homb−
(Cχ, N) = Homg(Mχ, N) and Homb−

(N,Cχ) = Homg(N,M
∗
χ)

Proposition 5.1.2. The g module C[N+] is isomorphic toM∗0.

Proof. Consider the pairing

U(n+)× C[N+]→ C (x, P) 7→ (x · P)(1)

This in n+ invariant as well as h invariant with respect to the vector field action on the sec-
ond factor and to the action by minus right multiplication of n+ and the adjoint action of h on
U(n+). We can prove by induction that given any polynomial P ∈ C[N+] there exists an element
U ∈ U(n+) such that U · P = 1. Indeed consider the maximal root αmax appearing in P, then a
sufficient iterate application of eαmax · P eliminates this variable and we may proceed eliminating
all other variables. The pairing above is therefore non degenerate. In particular notice that under
the decompositions

U(n+) =
⊕
γ∈Q+

U(n+)γ C[N+] =
⊕
γ∈Q+

C[N+]−γ

It is quite clear, by h invariancy that under this pairing C[N+]−γ → U(n+)
∗
γ in particular we obtain

C[N+]→ U(n+)
∨ :=

⊕
γ∈Q+

U(n+)
∗
γ

This is an isomorphism since it is injective and by equality of dimensions of the spaces C[N+]−γ
and U(n+)γ. Now consider the morphism

C[N+]→ C0 P 7→ P(1)

this is easily seen to be a morphism of b− modules since we are considering the action of g on
N+ = U ⊂ G/B− and therefore for any a ∈ b we have a · 1 = 1. This morphism, since the coin-
duction functor is the right adjoint of the restriction functor and since M∗0 = Coindgb C0, induces
a morphism of g modules C[N+] →M∗0 using the identification of n+ modules M∗0 = U(n+)

∨ we
find that this homomorphism coincides with the one induced by the pairing above and therefore
it is an isomorphism.

As a corollary, using the identification of n+ modules C[N+] = U(n+)
∨, we may define other

structures of g module on C[N+] defining

C[N+]χ :=M∗χ for χ ∈ h∗

These other g structures may be obtained in a different way. Consider the Weyl algebra of
differential operators on N+ = U:

D(U) = D(N+) := C
[
yα,

∂

∂yα

]
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It may be described as the free algebra in the variables a∗α = yα, aα = ∂
∂yα

subject to the relations

[a∗α, a
∗
β] = 0 [aα, aβ] = 0 [aα, a

∗
β] = δα,β

This algebra carries a natural filtrationD≤n defined by the order of the differential operators. D≤1
is easily seen to be a Lie subalgebra of D, it is spanned by elements of the form∑

α

Pα(y)
∂

∂yα
+Q(y)

In addition we have a short exact sequence of Lie algebras

0→ C[U]→ D≤1 → Vect(U)→ 0

The map D≤1 → Vect(U) is not defined trough the natural action of D on the space of functions
C[U] = C[N+] but as the action of D≤1 induced by the bracket on its abelian ideal C[U].

Note that this sequence is actually split, since we may identify Vect(N+) with the Lie subal-
gebra of differential operators of order ≤ 1 which kill the constant function 1 ∈ C[N+] with the
natural action of D≤1 on C[N+].

Lemma 5.1.1. Let
0→ L1 → L2 → L3 → 0

be a split exact sequence of Lie algebras, and suppose L1 is an abelian ideal of L2. Note that the adjoint
action of L2 on L1 induces an action of the quotient L3 (since L1 is abelian). Therefore L1 is naturally an L3
module.

Let g be another Lie algebra and suppose we are given a morphism g → L3. This makes L1 into a g
module. Then the set of liftings up to isomorphism

0 L1 L2 L3 0

g

is in bijection with
H1(g, L1)

Using the above lemma, and noticing that by the Shapiro lemma

H1(g, Coind g
b−

C0) = H1(b−,C0) = (b−/[b−, b−])
∗ = h∗

It is not difficult to see that composing the lifting g → D≤1 with the natural action of D≤1 on
C[N+] we obtain the structure of g moduleM∗χ on C[N+].

5.1.2 Explicit formulas

Let (αi)i=1,...,l the chosen basis ∆ for the root system Φ and let ei, hi, fi be the induced standard
set of generators for g. The action of g on C[N+] =M

∗
χ may be written, with respect to the algebra
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D≤1 = C[a∗α, aα]

ei 7→ aαi +
∑
β>αi

Piβ(a
∗)aβ (5.1)

hi 7→∑
β

−β(hi)a
∗
βaβ + χ(hi) (5.2)

fi 7→∑
β

Qiβ(a
∗)aβ + χ(hi)a

∗
αi

(5.3)

This may be directly checked using the definition ofM∗χ and comparing it withM∗0 = C[N+].

5.2 The case of ĝκ

5.2.1 Overview

We now turn to our case of interest. We are going to define the analogous notions of algebra
of differential operators and of vector fields in the loop setting and in the vertex algebra setting.
Our first goal will be to find a ‘loop version’ of the exact sequence we encountered in the finite
dimensional case, we will find a huge difference though: the sequence is non split and it is not
possible to lift the morphism g((t))→ Vect(LU)

0 C[LU] Ag
≤1 Vect(LU) 0

g((t))

@

This difficulty is partially resolved: there exists a commutative diagram

0 C[LU] Ag
≤1 Vect(LU) 0

0 C1 ĝκc g((t)) 0

1 7→1

the critical value κc enters the picture again.

5.2.2 Action of g((t)) by vector fields

Consider the open subset U ⊂ G/B− as before. Applying the loop functor we obtain an action

LG× L(G/B−)→ L(G/B−)

This action induces an action of g((t)), the Lie algebra of LG on the ring of functions C[LU] obtained
by vector fields. We wish to describe this action in terms of the finite dimensional action g→ C[U].

Recall that the ring of functions on LU is isomorphic to

C[LU] = lim←− C[a∗α,n]α∈Φ+,n∈Z

(a∗α,n)n≥N
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We change a little bit our usual notation and define a∗α,n to be the regular function

a∗α,n : LU(R)→ A1(R) (xβ(t))β = (
∑
n∈Z

xβ,nt
−n)β 7→ xα,n

In addition let aβ,m be the vector field defined by

aα,m : LU(R)→ TLU(R) (rβ(t))β = (
∑
n

rβ,nt
−n)β 7→ (∑

n

(rβ,n + εδβ,αδn,−m)t−n
)
β

Note that following the definitions we have that the action of the vector fields aβ,m on the
functions a∗α,n is given by the following:

aβ,m · a∗α,n = δα,βδn,−m ∈ C[LU]

We proceed describing the Lie algebra of vector fields on LU. We denote by aα,n the vector
field

Proposition 5.2.1. Vect(LU) is a Lie algebra isomorphic to the Lie algebra of formal series in the variables
a∗α,n, aβ,m, of the form ∑

β,n∈Z
Pβ,n(a

∗)aβ,n Pβ,n(a
∗) ∈ C[LU]

for which the Pα,n satisfy the following property: for each N ≥ 0 there exists a K ≥ N such that each Pn
for n ≤ −K is in the ideal generated by (a∗α,n)n≥N. The bracket is defined as[∑

β,n

Pβ,n(a
∗)aβ,n,

∑
γ,m

Qγ,m(a∗)aγ,m
]
=
∑

β,γ,n,m

(
Pβ,n

∂Qγ,m

∂a∗β,−n
aγ,m −

∂Pβ,n

∂a∗γ,−m
Qγ,maβ,n

)
Proof. Let v : LU → TLU be a vector field. Consider the coordinates a∗α,n, a∗,εα,n on TLU defined on
R points as

a∗α,n
(∑
n∈Z

(rβ,n + εrεβ,n)t
−n
)
β
7→ rα,n

a∗,εα,n
(∑
n∈Z

(rβ,n + εrεβ,n)t
−n
)
β
7→ rεα,n

By hypothesis a∗α,n ◦ v = a∗α,n where the regular function on the right hand side is the usual
coordinate on LU as defined above. Let Pα,−n := a∗,εα,n ◦ v, it is a regular function on LU. Note that
by construction the vector field v is described as follows (on R points)

v(
∑
n∈Z

rβ,nt
−n)β =

(∑
n∈Z

(rβ,n + εPβ,−n(r))t
−n
)
β

We write
v =

∑
β,n∈Z

Pβ,naβ,n

The condition for such a function v to be well defined on LU is that the series on the right hand side
has to be a Laurent series. Consider now the subspace LNUwhich is affine with ring of coordinates

A = C[xα,n]n<N
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And consider the its universal element

XN ∈ LNU(A)

this must be mapped through v to a Laurent series, let’s say of pole at most M. It follows from
the Yoneda lemma that for any C algebra R and any element x ∈ LNU(R) the Laurent series v(x)
has pole at most M. From this discussion easily follows the condition on the Pα,n stated in the
proposition.

On the other hand it may be directly checked that each formal series of the above form induces
a well defined vector field. The computation of the bracket is straightforward.

Consider now the formal power series

a∗α(z) :=
∑
n∈Z

a∗α,nz
−n aα(z) =

∑
n∈Z

aα,nz
−n−1

Lemma 5.2.1. The Lie algebra homomorphism g((t))→ Vect(LU) is given by the following formula:

ei(z) 7→ aαi(z) +
∑
β>α

Piβ(a
∗(z))aβ(z) (5.4)

hi(z) 7→∑
β

−β(hi)a
∗
β(z)aβ(z) (5.5)

fi(z) 7→∑
β

Qiβ(a
∗(z))aβ(z) (5.6)

Proof. Consider the morphism induced by the action of G on G/B−

g×U→ TU

Let Ja be a basis for g and let J∗a be the basis for g∗ associated to the basis Ja. Suppose that Ja acts
on C[U] by the vector field ∑

α

Paα(y)
∂

∂yα

Let C[yα] = C[U] and let C[yα, yεα] = C[TU]. The expression above may be restated saying that
induced morphism on the ring of functions

C[yα, yεα]→ C[yα]⊗ C[J∗a]

is characterized by the formulas

yα 7→ yα yεα 7→∑
a

Paα(y)⊗ J∗a

This allows us to describe the vector field associated to an element Ja ⊗ tn ∈ g((t)).
For any C algebra R the map

g(R)×U(R)→ TU(R)

is described thanks to the above remark by

(Ja ⊗ r0, (rα)α)) 7→ (rα + εPaα(r)r0)α

87



applying this formula when R = R((t)) and r0 = tn we find that the vector field associated to
Ja ⊗ tn is given, on R points by

(rα(t))α =
(∑
n∈Z

rα,nt
−n
)
α
7→ (∑

n∈Z
rα,nt

−n + εPaα(r(t))t
n
)
α

If we write Paα(r(t))tn =
∑
m∈ZQ

a
α,m(r)tm+n then the Qaα,m actually define functions on LU

and the associated vector field is ∑
α,m

Qaα,maα,m+n

which is exactly the coefficient of z−n−1 of the expression
∑
α P

a
α(a

∗(z))aα(z).

5.2.3 The completed Weyl algebra Ãg

Consider Ag the algebra generated by elements a∗α,n, aβ,m for α,β ∈ Φ+ and n,m ∈ Z subject to
the relations

[a∗α,n, a
∗
β,m] = [aα,n, aβ,m] = 0 [aα,n, a

∗
β,m] = δα,βδn,−m

Consider a topology on Ag generated by the subspaces IN,M the left ideals generated by aα,n :
n ≥ N and a∗β,mm ≥M.

Definition 5.2.1. Define the completed Weyl algebra Ãg to be the completion ofAg for the topology
induced by the IN,M. The product on Ag may be checked to continuous for this topology and
therefore induces a structure of associative algebra on Ãg.

An element of Ãg may be written as an infinite sum∑
n≥N

Pα,Naα,n +
∑
m≥M

Qα,ma
∗
α,m Pα,n, Qβ,m ∈ Ag

Let Ãg
0 be the abelian complete subalgebra generated by the a∗α,n, following the definitions is quite

clear that Ãg
0 ' C[LU]. Finally we define Ãg

≤1 to be the completion of the subspace Ag
≤1 which is

defined to be the span of products of elements of Ag
0 and elements aα,n.

Let’s describe in more detail Ãg
≤1. Note first that the subspace Ag

≤1 is naturally a Lie algebra,
with the bracket induced by the structure of associative algebra on Ag. Since the product in Ag is
continuous so is this bracket, Ãg

≤1 carries therefore a natural structure of Lie algebra.
In addition a general element of Ãg may be written as an infinite sum∑

n≥N

Pα,naα,n +
∑
m≥M1

∑
k∈Km

Q1α,β,k,maβ,ka
∗
α,m +

∑
m≥M2

Q2α,ma
∗
α,m

where Km ⊂ Z is a finite set and Pα,n, Q1α,β,k,m, Q
2
α,m ∈ A

g
0.

We are ready to define the exact sequence we are interested in

Lemma 5.2.2. There exists an exact sequence of Lie algebras

0 C[LU] Ãg
≤1 Vect(LU) 0
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Proof. We claim that the linear map that sends an element of the form∑
n≥N

Pα,naα,n +
∑
m≥M1

∑
k∈Km

Q1α,β,k,maβ,ka
∗
α,m +

∑
m≥M2

Q2α,ma
∗
α,m

to the vector field ∑
n≥N

Pα,naα,n +
∑
m≥M1

∑
k∈Km

a∗α,mQ
1
α,β,k,maβ,k

is an homomorphism of Lie algebras whose kernel is exactly Ãg
0 = C[LU]. As a linear maps it is

clearly well defined and is kernel is Ãg
0. It remains to show that it is a Lie algebra homomorphism.

To see this it suffices to notice that the map is continuous and it is a Lie algebra homomorphism
on the quotients. Since the bracket on both (complete) spaces is continuous this implies that the
map Ãg

≤1 → Vect(LU) is a Lie algebra homomorphism as well.

To proceed with our goal of lifting the homomorphism g((t))→ Vect(LU) we are going to need
the ‘local’ versions of these Lie algebras. The vertex algebra approach will be crucial.

5.3 Vertex algebra interpretation

We are now going to define a vertex algebraMg closely related to the completed Weyl algebra Ãg.

Definition 5.3.1. Consider the Ag moduleMg, generated by a vector |0〉 and such that

a∗α,n|0〉 = 0 ∀n ≥ 1 aα,n|0〉 = 0 ∀n ≥ 0

Equivalently, consider the abelian subalgebraAg
+ generated by the elements a∗α,n, aβ,m with n ≥ 1

andm ≥ 0 and consider its trivial one dimensional module C|0〉, finally define

Mg = IndA
g

Ag
+
C|0〉 = Ag ⊗Ag

+
C|0〉

Notice that since Ag = Ag
− ⊗A

g
+ as a right Ag

+ module where Ag
− is the abelian subalgebra gener-

ated by a∗α,n, aβ,m for n < 1 andm < 0. We have

Mg ' Ag
−

as vector spaces.

We define a structure of Z+ graded vertex algebra onMg as follows:

• (Z+ grading) We set degaα1,n1 . . . aαk,nka
∗
β1,m1

. . . a∗βl,l |0〉 := −
∑
ni −

∑
mj;

• (Vacuum vector) We set |0〉 as the vacuum vector;

• (Translation operator) We define the translation operator T by the formulas

T |0〉 = 0 [T, aα,n] = −naα,n−1 [T, a∗α,n] = (−n− 1)a∗α,n−1
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• (Vertex operators) We set

Y(aα,−1|0〉, z) := aα(z) Y(a∗α,0|0〉, z) := a∗α(z)

Y(aα1,n1 . . . aαk,nka
∗
β1,m1

. . . a∗βl,l |0〉, z) =∏ 1

(−ni − 1)!

∏ 1

(−mj)!
: ∂−n1−1z aα1(z) . . . ∂

−nk−1
z aαk(z)∂

−m1
z a∗(z)β1 . . . ∂

−ml
z a∗βl(z)

Thanks to the reconstruction theorem to prove that this defines a structure of a vertex algebra
it is enough to show that the fields aα(z) and a∗α(z) are mutually local.

[aα(z), a
∗
β(w)] =

∑
n,m

[aα,n, a
∗
α,m]z−n−1w−m =

∑
n,m

δα,βδn,−mz
−n−1w−m = δα,βδ(z−w)

As in the case of Vκ(g) and the enveloping algebra Ũκ(ĝ) we may interpret vertex operators on
Mg as vertex operators with coefficients in Ãg.

Proposition 5.3.1. The complete algebra Ũ(Mg) is canonically isomorphic to Ãg. In addition, the map

U(Mg)→ Ũ(Mg)

is injective and hence U(Mg) is naturally a Lie subalgebra of Ãg.

Proof. The proof of this statement is completely analogous to the proof of theorem 4.2.2.

We denote by Ãg
0,loc := Ã

g
0∩U(Mg), by Ãg

≤1,loc := Ã
g
≤1∩U(Mg) and by Tloc := Im(Ãg

≤1,loc →
Vect(LU)). We have an exact sequence

0→ Ãg
0,loc → Ãg

≤1,loc → Tloc → 0

It is not difficult to see that Ãg
≤1,loc is the span of the Fourier coefficients of operators of the form

Y[P(a∗)aβ,−1|0〉, z] = : P(a∗(z))aβ(z) :

By the definition of the morphism Ãg
≤1 → Vect(LU) such series are sent to the series of vector

fields
P(a∗(z))aβ(z)

It follows that the image of g((t)) in Vect(LU) is actually contained in Tloc, we have therefore a
diagram

0 Ãg
0,loc Ãg

≤1,loc Tloc 0

g((t))
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5.4 Cocycles and liftings

Consider an exact sequence of Lie algebras

0→ h→ l̃→ l→ 0

where h is an abelian ideal of l̃. Since h is an abelian ideal the adjoint action of l̃ on h factors through
an action of l.

The Lie algebra l̃ is called an extension of l. Choosing a splitting ι : l → l̃ we can associate to it
a 2-cocycle with coefficients in h

ω(X, Y) := i([X, Y]l) − [i(X), i(Y)]̃l ω ∈ H2(l, h)

where h has the l module structure defined by the adjoint action of l̃.
The following lemma will be crucial for us.

Lemma 5.4.1. Let h, l̃, l as above and letω ∈ H2(l, h) be a cocycle defining the extension.
Suppose we are given another Lie algebra g, a g module h ′ and a 2-cocycle σ ∈ H2(g, h ′) which defines

an extension g̃.
Suppose additionally that we are given two Lie algebra homomorphisms β : h ′ → h and α : g→ l. Then

if the cocycles

β∗σ and α∗ω ∈ H2(g, h)

are equal, there exists a lifting g̃→ l̃ such that the following diagram is commutative.

0 h l̃ l 0

0 h ′ g̃ g 0

αβ

Our goal is to apply the above lemma in our setting, in particular we are going to consider the
diagram

0 Ãg
0,loc Ãg

≤1,loc Tloc 0

0 C ĝκc g((t)) 0

ι

and denote by ω the cocycle in H2(g((t)), Ãg
0,loc) obtained by pullback of the cocycle which

defines the extension of the upper row, and by σ the cocycle defining the extension ĝκc . In what
follows we will prove that

ι∗σ = ω ∈ H2(g((t)), Ãg
0,loc)

We will use the following lemma which is proved in [Fre07] lemma 5.6.7, which we state in a
slightly different fashion.
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Lemma 5.4.2. If the two cocycles ι∗σ andω, viewed as bilinear maps

2∧
g((t))→ Ãg

0,loc

coincides when restricted to h((t)) they are actually equal as elements of

ι∗σ = ω ∈ H2(g((t)), Ãg
0,loc)

Proof. See [Fre07, Lemma 5.6.7].

5.4.1 Computation of the cocycle, the Wick formula

We proved before that the Lie algebra Tloc is spanned by the Fourier coefficients of series of the
form

P(a∗(z))aβ(z)

choose the splitting i : Tloc → Ãg
≤1,loc which sends the n-th coefficient of the series above to the

n-th coefficient of the normally ordered product

: P(a∗(z)) · aβ(z) :

this is just a linear map which composed with Ãg
≤1,loc → Tloc is the identity.

To compute the cocycle must evaluate the expressions

[i(X), i(Y)] − i([X, Y]) with X, Y ∈ g((t))

In order to do this we state the so called Wick formula, which applies in our case, but is valid
not only for the vertex algebraMg but for all the so called free field algebras.

Definition 5.4.1. A vertex algebra V is called a free field algebra if it is generated (in the sense of
the reconstruction theorem) by fields aα such that the coefficients cj(w) in the expansion

[aα(z), aβ(w)] =
∑
m≥0

1

m!
cm(w)∂mwδ(z−w)

are constant (i.e. cm(w) ∈ C[[w±1]] ⊂ EndV[[w±1]]).

For a moment we treat the case g = sl2, so that we may eliminate the index α, the general case
is treated no differently. Therefore in what follows we write a∗ instead of a∗α and a instead of aα.

Consider the OPEs

a(z)a∗(w) =
1

z−w
+ : a(z)a∗(w) : (5.7)

a∗(z)a(w) = −
1

z−w
+ : a∗(z)a(w) : (5.8)

∂nz a
∗(z)∂mwa(w) = (−1)n

(n+m)!

(z−w)n+m+1
+ : ∂nz a

∗(z)∂mwa(w) : (5.9)

∂mz a(z)∂
n
wa
∗(w) = (−1)m+1 (n+m)!

(z−w)n+m+1
+ : ∂mz a(z)∂

n
wa
∗(w) : (5.10)
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Where as usual we consider the expansion of 1
z−w in positive powers of w.

Our goal is to give a formula to compute the product P(z)Q(w) where P and Q are two nor-
mally ordered monomials in the formal series ∂zna(z), ∂mz a∗(z) (resp. w). This formula will
express this product in terms of simpler normally ordered product.

A single pairing between P(z) andQ(w) is the choice of an ordered couple of the form (∂nz a
∗(z), ∂mz a(w))

(or (∂nz a(z), ∂mz a∗(w)) where ∂nz a∗(z) appears as a factor of P(z) and ∂mwa(w) appears as a factor
of Q(w). We attach to such a pairing the rational function

fn,m(z,w) = (−1)n
(n+m)!

(z−w)n+m+1

which appears in the OPE of the two factors. Note that a single pairing may appear multiple times.
A multiple pairing is a disjoint union of single pairings. To a multiple pairing B we associate

the rational function fB(z,w) which is the product of all the rational functions of the single pairings
appearing in B.

We define (P(z)P(w))B as the product of the two polynomials after we remove all the factors
contained in the pairing, if all the factors are contained in B we set (P(z)Q(w))B = 1. Finally we
define the contraction of P andQ for the pairing B as the normally ordered product : (P(z)Q(w))B :
multiplied by the function fB(z,w), in addition we define also the contraction for the empty pair-
ing as

: P(z)Q(w) :∅: := : P(z)Q(w) :

Lemma 5.4.3 (Wick formula). The following equality holds

P(z)Q(w) =
∑

B∈pairings

: P(z)Q(w) :B

where we sum over all pairings B, including the empty one, counted with multiplicity. This statement holds
also if we consider P and Q as series with coefficients in Ãg.

Proof. See [Kac98, Theorem 3.3].

We are going to use the Wick formula in the particular case of polynomials of the form :
P(z)a(z) : and : Q(w)a(w) : where P and Q are monomials in the ∂nz a∗(z) only. Monomials of
this type are exactly the vertex operators of monomials of the form Pa−1 and Qa−1 respectively,
with P and Qmonomials in the variables a∗n n ≤ 0.

This of course moves us a step further in the calculation of the cocycle since the product
Y(Pa−1, z)Y(Qa−1, w) contains all the information of the commutator [Y(Pa−1, z), Y(Qa−1, w)].

Lemma 5.4.4. The following formula holds

Y(Pa−1, z)Y(Qa−1, w) = : Y(Pa−1, z)Y(Qa−1, w) :

+
∑
n≥0

1

(z−w)n+1
: Y(P, z)Y

(
∂Q

∂a∗−n
a−1, w

)
:

−
∑
n≥0

1

(z−w)n+1
: Y

(
∂P

∂a∗−n
a−1, z

)
Y(Q,w) :

−
∑
n,m≥0

1

(z−w)n+m+2
: Y

(
∂P

∂a∗−n
, z

)
Y

(
∂Q

∂a∗−m
, w

)
:

93



Proof. It suffices to apply the Wick formula, after noticing that the contraction with respect to the
pair (∂nz a

∗(z), a(w)) ( or (a(z), ∂mwa
∗(w))), counted with multiplicity, corresponds to taking the

derivative of P with respect to a∗−n and to eliminate the factor a−1 from Qa−1.

We are ready to state a compact formula for our two cocycle.

Proposition 5.4.1. The cocycleω for the extension

0 Ãg
0,loc Ãg

≤1,loc Tloc 0

calculated through the splitting i defined by the normal ordering is given by the following formula

ω((Pa−1)[k], (Qa−1)[s]) =

−
∑
n,m≥0

∫ (
1

(n+m+ 1)!
∂n+m+1
z Y

( ∂P

∂a∗−n
, z
)
Y
( ∂Q

∂a∗−m
, w
)
zkws

)
|z=w

dw

Proof. We compute first the commutator between the vector fields formal series P(z)a(z) and
Q(w)a(w). We claim that it is equal to

[P(z)a(z), Q(w)a(w)] =
∑
n≥0

∂nwδ(z−w)P(z)
∂Q

∂a∗−n
(w)a(w) −

∑
n≥0

∂nz δ(z−w)
∂P

∂a∗−n
(z)Q(w)a(z)

which is just a verification using the fact that

[a(z)∂nwa
∗(w)] = ∂nwδ(z−w) [a(w), ∂nz a

∗(z)] = ∂nz δ(z−w)

In addition the Wick formula implies that the commutator between the series Y(Pa−1, z) and
Y(Qa−1, w) is given by

[Y(Pa−1, z)Y(Qa−1, w)] =
∑
n≥0

∂nwδ(z−w) : Y(P, z)Y

(
∂Q

∂a∗−n
a−1, w

)
:

−
∑
n≥0

∂nwδ(z−w) : Y

(
∂P

∂a∗−n
a−1, z

)
Y(Q,w) :

−
∑
n,m≥0

∂n+m+1
w δ(z−w) : Y

(
∂P

∂a∗−n
, z

)
Y

(
∂Q

∂a∗−m
, w

)
:

It is quite clear that the first two factors of this expression are exactly the normally ordered product
of the commutator [P(z)a(z), Q(w)a(w)]. What remains is the last row, whose (k, l) coefficient is
given exactly by the formula we wanted.

Corollary 5.4.1. The extension

0 Ãg
0,loc Ãg

≤1,loc Tloc 0

is non split.
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Proof. We compute the cocycle for the elements hn defined by the formula

Y(a∗0a−1, z) = : a∗(z)a(z) : =
∑
n∈Z

hnz−n−1

so that
hn =

∑
k∈Z

: a∗kan−k :

According to the formula of proposition 5.4.1 we have

ω(hn,hm) = −

∫
(∂zz

nwm)|z=wdw = −nδn,−m

On the other hand we find that the image of hn in Tloc is the vector field hn :
∑
n∈Z a

∗
kan−k. It is

quite easy to see that these vector fields commute with each other.
If the extension was split there would exist correction terms fn ∈ Ãg

0,loc such that

[hn + fn,hm + fm] = nδn,−m + hn · fm − hm · fn = 0

But the hn are ‘linear’ vector fields (i.e. linear in the coordinates a∗−k on LU), therefore they cannot
produce such a constant function.

The elements hn are not arbitrarily chosen: they are exactly the normally ordered vector fields
corresponding to the action of h((t)),

Proposition 5.4.2. Let ω ∈ H2(g((t)), Ãg
0,loc) be the cocycle obtained by pullback of the cocycle induced

by the splitting i for the upper row, and let σ the cocycle defining the central extension ĝκc . Then ω and
ι∗σ are equal if restricted to h((t)).

Proof. The formula of proposition 5.4.1, applied to the vector fields

hi(z) = −
∑
β

β(hi)a
∗
β(z)aβ(z)

gives us by bilinearity, as in corollary 5.4.1

ω(hi,n, hj,n) =
∑
β,γ

β(hi)γ(hj)δγ,δ(−nδn,−m) = −nδn−m
∑
β∈Φ+

β(hi)β(hj)

Since hi acts on the subspace gβ by multiplication of β(hi) it is clear that the expression above
equals to

−nδn,−m
1

2
κg(hi, hj) = ι∗σ(hi, hj)

Combining this result with lemma 5.4.2 and with lemma 5.4.1 we obtain the following propo-
sition.
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Proposition 5.4.3. There exists an homomorphism of Lie algebras ĝκc → Ãg
≤1,loc such that the following

diagram commutes:

0 Ãg
0,loc Ãg

≤1,loc Tloc 0

0 C ĝκc g((t)) 0

ι

5.4.2 Explicit formulas

Theorem 5.4.1. There exists constants ci ∈ C such that the homomorphism ĝκc → g((t)) is given by the
following formulas

ei(z) 7→ aαi(z) +
∑
β>αi

: Piβ(a
∗(z))aβ(z) :

hi(z) 7→ −
∑
β∈Φ+

β(hi) : a
∗
β(z)aβ(z) :

fi(z) 7→ ∑
β∈Φ+

: Qiβ(a
∗(z))aβ(z) : + ci∂za

∗
αi
(z)

Proof. See [Fre07, Theorem 6.1.3]

In addition we may do all the previous steps considering the right action of n+ as vector fields,
the following proposition is quite clear from the construction.

Proposition 5.4.4. The same construction performed for the right action eRα on C[N+] a Lie algebra homo-
morphism

Ln+ → Ãg
≤1 eRα(z) 7→ aα(z) +

∑
β>αi

: PR,αβ (a∗(z))aβ(z) :

which commutes with the fields eα(z).

Note that by the initial remarks PR,αβ does not contain the variable yβ and therefore there is no
necessity of considering the normally ordered product.

5.5 Free field realization

Recall that in the finite dimensional case we could attach to any χ ∈ h∗ a structure of g-module on
C[U], obtained by modifying the standard action by vector fields and for which C[U] 'M∗χ.

We are now going to construct an homomorphism of Lie algebras which ‘glues togheter’ all
these different actions and then consider its vertex algebra analogue.

Consider the quotient G/N− and the map

π : G/N− → G/B−
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this is a G equivariant morphism when we consider the action of G on both spaces by left
multiplication. Let π−1(U) be the affine open subset of G/N− defined by the preimage of U ⊂
G/B−. The multiplication

N+ ×H→ π−1(U) (x, h) 7→ xhN−

induce an isomorphism. The morphism π, under the isomorphism π−1(U) = N+×H andU = N+

corresponds to the projection on the first factor.
As before the action of G induces an action of the Lie algebra g by vector fields on the space

π−1(U) therefore we obtain an homomorphism

g→ Vect(U×H) = Vect(U)⊗ C[H]⊕ C[U]⊗ Vect(H)

Denote by bi ∈ Vect(H) the vector fields associated to hi ∈ h through the natural Lie algebra
homomorphism

h→ Vect(H)

We may describe the homomorphism g→ Vect(N+×H) in terms of the homomorphism of the
previous section g→ Vect(N+).

Proposition 5.5.1. The homomorphism g → Vect(U × H) may be described in terms of the coordinates
a∗α on U = N+ and the vector fields aα and bi as follows

ei 7→ aαi +
∑
β>αi

Piβ(a
∗)aβ

hi 7→∑
β

−β(hi)a
∗
βaβ + bi

fi 7→∑
β

Qiβ(a
∗)aβ + a∗αibi

Proof. We consider the isomorphism U×H = N+ ×H.

(ei) It is clear that the action of left multiplication restricted to the subgroupN+ coincides with
the left multiplication on the first factor, hence the action of ei is described by the same formulas
we obtained when we studied the action by vector fields on U = N+;

(hi) Note that the action by left multiplication of G restricted to H sends U × H to itself. Since
H normalizes N+ we have that this action may be described as

h1 · (x, h2) = (h1xh
−1
1 , h1h2)

It follows that the vector field associated to hi is equal to the sum of the vector field induced by
its action onN+ plus the vector field induced by left multiplication onHwhich is exactly what we
wanted.

(fi) We identifyN+×Hwith BB−/N−. We do some calculations considering a general element
g ∈ n−(R) ⊂ N−(R[ε]) let (x, h) = xh ∈ N+ ×H and write

g(xh) = (g·x)γ(g, x)β(g, x)h with (g·x) ∈ N+(R[ε]) and γ(g, x) ∈ H(R[ε]), β(g, x) ∈ N−(R[ε])
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This shows that for any fβ ∈ n− the vector field associated to fβ is of the form

∑
α∈Φ+

Pβα(a
∗)aα +

l∑
i=1

Qβi (a
∗)bi

where the polynomials Qβi (a
∗) are functions on N+. Notice that in particular for the generators

fi we must have that Qαij has weight −αi. Since the weight spaces for the simple roots are one
dimensional it follows that there exist complex numbers cij ∈ C such that

Qαij (a∗) = cija
∗
αi

By computing the bracket between the vector fields associated to ei and fj one easily finds that
cij = 0 if i 6= j. Finally to compute cii we reduce ourselves to the sl2 which we treat in the
following proposition.

Proposition 5.5.2 (sl2 case). The homomorphism sl2 → Vect(U × H) is described by the following
formulas

e 7→ a

h 7→ −2a∗a+ b

f 7→ −(a∗)2a+ a∗b

Proof. We just need to compute the action of f. We treat elements of N × H as classes in BB−/B−.
Notice that the vector field b in the coordinate µ : H→ C for which

h =

(
µ(h) 0

0 µ(h)−1

)
we have b = −µ∂µ now consider any λ ∈ R, µ ∈ R∗. To compute the action of f as a vector field
we need to computer(

1 0
−ε 1

)
·

[(
1 −λ
0 1

)(
µ 0

0 µ−1

)]
=

[(
1 −λ(1− ελ)
0 1

)(
µ(1− λε) 0

0 µ−1(1+ λε)

)]
It is then clear that µ((−f) · x) = µ(x) − ελ(x)µ(x) and therefore the b component of f is exactly
λb.

So the homomorphism g → Vect(U × H) has image contained in the subalgebra Vect(U) ⊕
C[U]⊗h. Considering the loop case, as in lemma 5.2.1 we obtain an homomorphism of Lie algebras

g((t))→ Vect(LU)⊕ C[LU]⊗̂Lh

where ⊗̂ denotes the completed tensor product of the complete vector spaces C[LU], Lh. This
homomorphism is described by the following formulas on the generators.
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ei(z) 7→ aαi(z) +
∑
β>αi

Piβ(a
∗(z))aβ(z)

hi(z) 7→∑
β

−β(hi)a
∗
β(z)aβ(z) + bi(z)

fi(z) 7→∑
β

Qiβ(a
∗(z))aβ(z) + a

∗
αi
(z)bi(z)

where bi(z) =
∑
n∈Z bi,nz

−n−1 and bi,n is the vector field on LH induced by the action of hi,n.

We want to emulate the work we did in the previous section in this new case, hence we would
like to give a vertex algebra interpretation of these new fields. We define a new vertex algebra in
full generality (even if for now we only need the simplest version of this algebra), the construction
is analogous to the construction of Vk(ĝ)

Definition 5.5.1. Let h be the abelian finite dimensional Lie algebra with a basis (bi)i=1,...,l. Let κ
be a bilinear anti-symmetric form on h. Consider ĥκ the affine algebra associated to h and κ. We
denote its vacuum module

πκ0 := Vκ(h)

The following ordered monomials form a basis for πκ0

bi1,n1 . . . bim,nm |0〉 nj < 0

Note that for κ = 0 this vertex algebra is actually abelian, we denote it simply by π0. This is
the vertex algebra we are interested in for now.

To proceed in our quest to obtain a ĝκc module we need to find an appropriate extension of the
Lie algebra Vect(LU) ⊕ C[LU]⊗̂Vect(LH). Note that this is actually a direct sum of Lie algebras
(i.e. the first and the second factor commute).

We start by defining the local Lie algebras as in the previous case. Let Tloc = Im(Ãg
≤1,loc →

Vect(LU)) as before and let Igloc to be the span of the Fourier coefficients of series of vector fields
of the form

P(a∗(z))bi(z)

it is of course an abelian subalgebra of the Lie algebra C[LU]⊗̂Vect(LH).
We consider the exact sequence

0 Ãg
0,loc Ãg

≤1,loc ⊕ I
g
loc Tloc ⊕ Igloc 0

and notice that the image of the homomorphism g((t)) → Vect(LU) ⊕ C[LU]⊗̂Vect(LH) is
contained in the subalgebra Tloc ⊕ Igloc.

Lemma 5.5.1. The Lie algebra Ãg
≤1,loc ⊕ I

g
loc is naturally a Lie subalgebra of U(Mg ⊗ π0). In addition

Mg ⊗ π0 is still a free field algebra, therefore the Wick formula holds.

Proof. This is completely analogous to theMg case.
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By the above lemma we may consider the splitting i : Tloc ⊕ Igloc → Ãg
≤1,loc ⊕ I

g
loc induced by

taking the normally ordered product and compute the associated cocycle with the Wick formula.

Proposition 5.5.3. The cocycle ωnew calculated with the above splitting is equal to the cocycle ω ∈
Hom(

∧2
g((t)), Ãg

0,loc) calculated in the previous section.
In particular its restriction to h((t)) is equal to ι∗σ therefore there exists an homomorphism of Lie

algebras
ĝκc → Ãg

≤1,loc ⊕ I
g
loc ⊂ U(Mg ⊗ π0)

5.5.1 Explicit formulas

The above morphism we obtained is described on the generators by the following formulas:

ei(z) 7→ aαi(z) +
∑
β>αi

: Piβ(a
∗(z))aβ(z) :

hi(z) 7→ −
∑
β∈Φ+

β(hi) : a
∗
β(z)aβ(z) : +bi(z)

fi(z) 7→ ∑
β∈Φ+

: Qiβ(a
∗(z))aβ(z) : + ci∂za

∗
αi
(z) + a∗αi(z)bi(z)

5.5.2 Vertex algebra interpretation

Our next immediate goal is to translate the above homomorphism of Lie algebras in the vertex
algebra language. The reason behind this and the vertex algebras we are considering are way
smaller than the completed algebras we may consider instead (for instance the homomorphism
ĝκc → U(Mg ⊗ π0) induces an homomorphism Ũκc(ĝ) → Ũ(Mg ⊗ π0)) and therefore more man-
ageable.

Lemma 5.5.2. Let V be a Z-graded vertex algebra. Then defining an homomorphism of Z graded vertex
algebras

Vk(g)→ V

is equivalent to the choice of vectors J̃a−1|0〉 ∈ V such that the coefficients

YV(J̃a−1|0〉, z) =
∑
n∈Z

J̃anz
−n−1

satisfy the commutation relations of ĝk with 1 = id.

Proof. Given an homomorphism of vertex algebras ϕ : Vk(g)→ V we have

[J̃an, J̃
b
m] =

∑
k≥0

(
n

k

)(
J̃ak(J̃

b
−1|0〉)

)
n+m−k

=
∑
k≥0

(
n

k

)
ϕ(JakJ

b
−1|0〉)n+m−k

=

(
n

0

)
ϕ([Ja, Jb]−1|0〉)n+m +

(
n

1

)
ϕ(κ(Ja, Jb)|0〉)n+m−1

= ˜[Ja, Jb]n+m + nκ(Ja, Jb)δn,−midV
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So the elements J̃an satisfy the commutation relations of ĝκ.
On the other hand if we are given elements J̃a−1|0〉 with the property above it is easily checked

that the linear map Vκ(g)→ V defined by

Ja1n1 . . . J
am
nm

|0〉 7→ J̃a1n1 . . . J̃
am
nm |0〉

is an homomorphism of Z graded vertex algebras.

Note that the operators of the explicit formulas, defining the action of ĝk on Mg ⊗ π0 come
actually from the vertex operators of certain elements in the vertex algebraMg ⊗ π0.

Y

(
(aαi,−1 + P

i
β(a

∗
0)aβ,−1)|0〉, z

)
= aαi(z) +

∑
β>αi

: Piβ(a
∗(z))aβ(z) :

Y

((
−
∑

β(hi)a
∗
β,0aβ,−1 + bi,−1

)
|0〉, z

)
= −

∑
β∈Φ+

β(hi) : a
∗
β(z)aβ(z) : +bi(z)

Y

((∑
Qiβ(a

∗
0)aβ,−1 + cia

∗
αi,−1

+ a∗αi,0bi,−1
)
|0〉, z

)
=
∑
β∈Φ+

: Qiβ(a
∗(z))aβ(z) : + ci∂za

∗
αi
(z) + a∗αi(z)bi(z)

And it is possible to check by induction that for all basis elements eα, fα of g the associated
series eα(z), fα(z) are of the form Y(· , z).

This remark, combined with lemma 5.5.2 implies the following.

Theorem 5.5.1. There exists an homomorphism of vertex algebras

Vκc(g)→Mg ⊗ π0

such that

ei,−1|0〉 7→ (
aαi,−1 +

∑
β>α

Piβ(a
∗
0)aβ,−1

)
|0〉

hi,−1|0〉 7→ ( ∑
β∈Φ+

−β(hi)a
∗
β,0aβ,−1 + bi,−1

)
|0〉

fi,−1|0〉 7→ ( ∑
β∈Φ+

Qiβ(a
∗
0)aβ,−1 + cia

∗
αi,−1

+ a∗αi,0bi,−1
)
|0〉

5.5.3 Deforming to other Levels

We present an extension of the previous theorem to an arbitrary level κ. For the proof, we refer to
[FBZ04][Theorem 6.2.1]

Theorem 5.5.2. There exists an homomorphism of vertex algebras

Vκ(g)→Mg ⊗ πκ−κc0
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such that

ei,−1|0〉 7→ (
aαi,−1 +

∑
β>α

Piβ(a
∗
0)aβ,−1

)
|0〉

hi,−1|0〉 7→ ( ∑
β∈Φ+

−β(hi)a
∗
β,0aβ,−1 + bi,−1

)
|0〉

fi,−1|0〉 7→ ( ∑
β∈Φ+

Qiβ(a
∗
0)aβ,−1 + (ci + (κ− κc)(ei, fi))a

∗
αi,−1

+ a∗αi,0bi,−1
)
|0〉

5.6 Conformal and quasi-conformal structures

We study in this section the conformal properties of the vertex algebras Mg and πκ−κc0 . Let’s start
by noticing that these vertex algebras may be decomposed as tensor product of simpler algebras.

We start by studying the simplest case, the one of sl2. Denote by M :=Msl2 since there is only
one root we drop the subscript α and use the fields a(z), a∗(z) as generating fields forM.

Remark 5.6.1. There is an isomorphism

Mg '
⊗
α∈Φ+

Mα

whereMα is the copy ofM induced by the immersion

M ↪→Mg which maps the fields a∗(z) 7→ a∗α(z) a(z) 7→ aα(z)

Proposition 5.6.1. The Z+ graded vertex algebraM is conformal with conformal vector

ω = a−1a
∗
−1|0〉

In addition this is the only possible conformal vector.

Proof. It is an easy computation to prove that a−1a∗−1 is a conformal vector.
Any other possible choice for a conformal vector must be of the form(

λa−1a
∗
−1 + µa−2 + νa

∗
−2

)
|0〉

But a simple evaluation of the OPEs

[a(z), Y(ω,w)] [a∗(z), Y(ω,w)]

shows that this coefficients must be exactly

λ = 1 µ = 0 ν = 0

Corollary 5.6.1. The vertex algebraMg is conformal with conformal vector( ∑
α∈Φ+

aα,−1a
∗
α,−1

)
|0〉

102



Analogous statements holds for πκ−κc0 . We introduce the notation πκ−κc0 (h) to precise the
abelian Lie algebra on which is defined the form κ− κc on the definition of π0 as a vacuum Verma
module. Consider an orthogonal basis hi for which

(κ− κc)(hi, hj) = λiδij

and consider the subalgebras πλi0 (hi) generated by the field bi(z) under the commutation relations
[bi,n, bi,m] = nλiδn,−m.

Remark 5.6.2. There is a natural isomorphism of vertex algebras

πκ−κc0 (h) =

l⊗
i=1

πλi0 (hi)

And as conformal structures are concerned we have the following.

Proposition 5.6.2. The vertex algebra πk0(b) generated by the field b(z) with commutation relations
[bn, bm] = n2kδn,−m is conformal if and only if k 6= 0. In addition it has a C-family of conformal
vectors

ωk,λ :=
( 1
4k
b−1b−1 −

λ

4k
b−2

)
|0〉 λ ∈ C

These are all possible conformal vectors.

Proof. Note that since π00 is abelian, it cannot be conformal. The rest of the proof is just a simple
computation, using the OPE formula.

5.6.1 Quasi-conformal structure on π0
Consider the vertex algebra πk0 for k 6= 0 and its conformal vectorωk,λ and write

Y(ω, z) =
∑
n∈Z

ωk,λn z−n−1 =
∑
n∈Z

Lnz
−n−2 so Ln = ωk,λn+1

we compute the commutation relations between Ln and bm

[bn, Lm] = [bn,ωm+1] =
∑
k≥0

(
n

k

)
(bkω

k,λ)n+m+1−k = nbn+m − n(n− 1)λδn+m−2,−1

Proposition 5.6.3. The conformal action ofωk,λ on πk0(b) induces through a limit process a quasi confor-
mal structure on the abelian vertex algebra π0(b) given by the above formulas.

Proof. We will use the definitions given in section 7.4.1 and emulate the proof of Proposition 3.4.3.
Consider the C[β] vertex algebra πβ0 (b), and notice that we may define C[β]-linear operators Ln
acting on ^(b)

β
with the above formulas. The operators Ln with n ≥ −1 preserve the Lie subalgebra

Cb[[t]][β]⊕ C[β]1 and therefore they act also on π0β.
A simple calculation provides us with the equation

4βLn =
(
(b−1b−1 − λb−2)|0〉

)
n+1

and therefore they satisfy the commutation relations of the axioms of a quasi conformal vertex
algebras. Since πβ0 has no torsion elements the same equations must be satisfied by the C[β] oper-
ators Ln themselves, and therefore they satisfy such relations for the specialization at β = 0.
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5.6.2 Free field realization and conformal structures

The above considerations make us wonder if the free field realization

Vκ(g)→Mg ⊗ πκ−κc0 (h)

preserves to conformal structures for κ 6= κc or the quasi conformal structures at the critical
level. Recall that the conformal vector on Vκ(g) is taken to be

Sκ :=
κg

2(κ− κc)

∑
a

Ja−1Ja,−1|0〉

Proposition 5.6.4. Consider κ 6= κc then the conformal vector Sκ ∈ Vκ(g) is sent through the free field
realization to the vector( ∑

α∈Φ+

aα,−1a
∗
α,−1

)
|0〉+ κg

κ− κc

(
1

2

l∑
i=1

bi,−1b
i
−1 − ρ−2

)
|0〉

in particular the free field realization is a morphism of conformal vertex algebras for κ 6= κc.
Since for at the critical value both structures are obtained through the same ‘limiting’ process the free

field realization of Vκc(g) is of quasi conformal vertex algebras. The structure of quasi-conformal vertex
algebra on π0 is given by the following formulas

Ln · bi,m = −mbi,m+n −1 ≤ n < −m

Ln · bi,−n = n(n+ 1) n > 0

Ln · bi,m = 0 n > −m

Proof. For the proof see [Fre07][Proposition 6.2.2 and Section 6.2.4]

5.7 Semi-infinite Parabolic induction 1

In this last section of the chapter we generalize some more the results we obtained so far. In
particular a slight modification of the proof of theorem 5.5.2 allows us to treat the case of a general
parabolic subalgebra p (as we will see, so far we only dealt with the case p = b−).

Consider a parabolic subalgebra p ⊂ g that contains the lower Borel subalgebra b− (in particu-
lar h ⊂ p. Let

p = m⊕ r

be a Levi decomposition of p. So m is a Levi subalgebra containing h and r is the unipotent
radical of p. In particular let Φp the root system of p, induced by the adjoint action of h ⊂ p. We
naturally haveΦp ⊂ Φ. We may take

m =
⊕

α:{α,−α}⊂Φp

gα ⊕ h r =
⊕

α∈Φp:−α/∈Φp

gα
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Let

m =

s⊕
i=1

mi ⊕ h

be the decomposition of m into a direct sum of simple Lie algebras mi, i ≥ 1 and an abelian Lie
algebra m0 such that these summands are orthogonal to each other with respect to the killing form
of g. Given a set of invariant inner products κi on mi for i = 1, . . . s, consider the corresponding
Kac-Moody algebra m̂i,κi and consider the vacuum Verma module Vκi(mi) for each i = 1, . . . , s
and denote by Vκ0(m0) the m̂0,κ0 module πκ00 defined as above. Considering all these vertex
algebras together we define

V(κi)(m) :=

s⊗
i=1

Vκi(mi)

with the tensor vertex algebra structure.
Finally consider the Weyl algebra Ag,p defined as Ag but with generators a∗α,n, aα,n for n ∈ Z

and α ∈ Φ+ \ Φp. And as before consider its Fock representation Mg,p with its vertex algebra
structure.

Notice that in the case in which p = b− we have m = h and r = n+, in particular V(κi)(m) = πκ0
and Mg,p = Mg. So we are actually considering a more general case. We prove the following
analogue of theorem 5.5.2.

Theorem 5.7.1. Let g, p,m, r as above and let κi a set of invariant inner products on mi such that there
exists an invariant inner product κ on g such that

κi − κi,c = κ|mi

where κi,c for i = 1, . . . , s is the critical value for the simple Lie algebras mi, while κ0,c = 0. There there
exists an homomorphism of vertex algebras

wp
κ : Vκ+κc(g)→Mg,p ⊗ V(κi)(m)

Proof. See [Fre07, Theorem 6.3.1]
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Chapter 6

Wakimoto modules and applications
to the center

We are going to define in this section the so called Wakimoto modules. First we are going to study
a little more precisely the morphism

Vκc(g)→Mg ⊗ π0

we will focus in particular on showing that it is actually injective, so this really is a ‘realization’ of
Vκc(g) in a free field algebra.

Next we are going to define what a module over a vertex algebra is and see the relationship
between Vκ(g) modules an ĝk modules.

Finally we will define the Wakimoto modules as Vκc(g) modules obtained by the pullback of
certainMg⊗π0 modules and study some of their properties. We identify the Verma module M0,κc

with a certain Wakimoto module. This characterization allows us to describe better the space of
invariants ζ(g) = Vκc(g)g[[t]] and ultimately to prove that

gr ζ(g) ' C[Jg∗]g[[t]]

6.1 Injectivity

We start by proving that the homomorphism defined in theorem 5.5.2

Vκ(g)→Mg ⊗ πκ−κc0

is injective for every invariant inner product κ. We start by considering the finite dimensional case.

6.1.1 The finite dimensional case

Recall that in Proposition 5.5.1 we constructed an homomorphism of Lie algebras

g→ Vect(N+ ×H)
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which actually has image contained in Vect(N+)⊕C[N+]⊗ h where we embed h ↪→ Vect(H) with
the natural homomorphism induced by left multiplication.

We obtain a morphism of associative algebras

U(g)→ D(N+)⊗ C[h∗] ⊂ D(N+ ×H)

where D(N+) is the Weyl algebra of differential operators on N+ and C[h∗] = Sym (h) is em-
bedded in D(N+ ×H) as the algebra generated by the vector fields in h ⊂ Vect(H).

Consider now the natural filtration on D(N+) defined by the order of the differential operator
D(N+)≤i and the natural filtration on the symmetric algebra C[h∗] = Sym(h), we define a filtration
on D(N+)⊗ C[h∗] setting

(D(N+)⊗ C[h∗])≤n :=

n⊕
i=0

D(N+)≤i ⊗ C[h∗]≤n−i

Since the Lie subalgebra Vect(N+) ⊕ C[N+] ⊗ h lies in degree ≤ 1. The homomorphism U(g) →
D(N+)⊗ C[h∗] preserves the filtrations. In addition we have equalities

grU(g) = Sym g grD(N+) = C[T∗N+] grC[h∗] = C[h∗]

and
grD(N+)⊗ C[h∗] = (grD(N+))⊗ (grC[h∗])

Thus we obtain an homomorphism

C[g∗]→ C[T∗N+]⊗ C[h∗]

Proposition 6.1.1. Consider the isomorphisms

T∗N+ = n∗+ ×N+

and the identifications h = h∗, n− = n∗+, g = g∗ induced by the killing form. Then the morphism of schemes

p : b− ×N+ → g

induced by the homomorphism of algebras C[g∗] → C[T∗N+] ⊗ C[h∗] and the above identifications, is
described by

(x, g) 7→ gxg−1 = Adg(x)

in particular its image is open and dense in g and p is generically one to one and therefore the homomorphism

C[g∗]→ C[T∗N+]⊗ C[h∗]

is injective.

Proof. By construction the action of g is given by a vector bundle morphism which may be written
as follows

g× (N+ ×H)→ T(N+ ×H) (Ja, x) 7→ (∑
α

Paα(x)eα +
∑
i

Qai (x)bi, x
)
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where, by the explicit formulas we gave in proposition 5.5.1, Paα, Qai ∈ C[N+]. The morphism
induced on the dual bundles is described as follows:

(n∗+×h∗)×(N+×H)→ g∗×(N+×H) (e∗α, x) 7→ (∑
a

Paα(x)(J
a)∗, x

)
(b∗i , x) 7→ (∑

a

Qai (x)(J
a)∗, x

)
since Paα, Qai do not depend on Hwe find that the morphism

(n∗+ × h∗)×N+ → g∗

obtained by composing the above morphism with the projection along the first factor is described
at the level of function exactly by the morphism C[g∗]→ C[T∗N+]⊗ C[h∗] we wanted to describe.
Now let π : g → n+ ⊕ h the linear projection induced by the decomposition g = n+ ⊕ h ⊕ n−, by
definition we have that the morphism g× (N+ ×H)→ (n+ × h)× (N+ ×H) is described by

(ξ, x) 7→ (π(xξx−1), x)

The dual morphism π∗ : n∗+ × h∗ → g∗, after identifying n∗+ = n−, h∗ = h and g∗ = g through the
Killing form is described exactly by the inclusion b− → g. It follows that our morphism of interest
is described as desired

b− ×N+ → g (ξ, x) 7→ xξx−1

6.1.2 The vertex algebra case

Consider now the homomorphism of vertex algebras

Vκ(g)→Mg ⊗ πκ−κc0

and consider the filtration on Vκ(g) induced by the PBW filtration, the filtration onMg induced by
the filtration on Ãg where Ãg

≤n are the differential operators of order at most n (i.e. polynomials
where in each monomial appear at most n factors of the form aα,m) and finally the PBW filtration
on πκ−κc0 (i.e. the order of a monomial in the bi,n).

It is quite clear by the formulas we presented that the homomorphism Vκ(g) → Mg ⊗ πκ−κc0

preserves these filtrations, and that these are actually vertex algebra filtrations.
In addition is not difficult to prove following equalities

grVκ(g) = C[Jg∗] grMg = C[JT∗N+] gr πκ−κc0 = C[Jh∗]

as (commutative) vertex algebras. We obtain an homomorphism of commutative algebras

C[Jg∗]→ C[JT∗N+]⊗ C[Jh∗]

the following lemma easily follows from the definitions.

Lemma 6.1.1. The morphism associated to C[Jg∗]→ C[JT∗N+]⊗ C[Jh∗] on the level of schemes

Jh∗ × JT∗N+ → Jg∗
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is the jet morphism Jp of the morphism described in the finite dimensional case

p : h∗ × T∗N+ → g∗

In particular the map
C[Jg∗]→ C[JT∗N+]⊗ C[Jh∗]

is injective.

Proof. The first part of the proposition is evident from the definitions. We therefore restrict our-
selves to proving that if

p : X→ Y

is a morphism of schemes isomorphic to An whose image is open and dense in Y and which is
generically one to one then the morphism of rings

(Jp)# : C[JY]→ C[JX]

is injective. It is quite clear that the finite dimensional morphism (Jnp)
# is injective, since the

image of Jnp is still open and dense in JnY and Jnp is still generically one to one. Now any regular
function on JY comes from a function on JnY (since Y ' Am) and the commutative diagram

C[JnY] C[JnX]

C[JY] C[JX]

(Jnp)
#

(Jp)#

concludes the proof.

This proposition has the following fundamental corollary.

Theorem 6.1.1. The homomorphism of vertex algebras

Vκ(g)→Mg ⊗ πκ−κc0

is injective for every κ.

Proof. Notice that by construction grVκ(g) = C[Jg∗], grMg = C[JT∗N+], gr π0 = C[Jh∗] and the
induced morphism C[Jg∗] → C[JT∗N+] ⊗ C[Jh∗] is exactly (Jp)#. Then the theorem follows from
the following general fact.

If V and W are two filtered vector spaces and ϕ : V → W is a linear map preserving the
filtrations such that the associated graded map

grϕ : grV → grW

is injective, then ϕ is injective.
To see this consider an a vector v ∈ V \ {0} such that ϕ(v) = 0 and let n ∈ Z+ such that

v ∈ V≤n \ V≤n−1. Then we have

grϕ(Symbv) = Symbϕ(v) = 0

But by hypothesis grϕ is injective so Symbv = 0which implies v = 0.
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6.2 The center and π0
We prove the following

Proposition 6.2.1. The center ζ(g) is mapped through the free field realization embedding

Vκc(g)→Mg ⊗ π0

into the subspace π0. In particular the embedding above induces an embedding of abelian vertex algebras

ζ(g) ↪→ π0

Proof. Notice that any element in the center maps to a g[[t]] invariant element ofMg ⊗ π0 thus we
only need to show that

(Mg ⊗ π0)g[[t]] ⊂ π0
One may prove by induction that the lexicographically ordered monomials∏

la<0

bia,la
∏
mb<0

eRβb,mb

∏
nc≤0

a∗αc,nc |0〉

form a basis ofMg ⊗ π0. Write this decomposition as

Mg ⊗ π0 =W0,κc ⊗Mg,+

a proof completely analogous to the one of Proposition 5.1.2 proves thatMg,+ is isomorphic, as an
n+[[t]]-module to U(n+[[t]])∨ and therefore its space of n+[[t]] invariants is one dimensional. Since
the action of n+[[t]] commutes with the operators bi,n, eRβ,m we find that a g[[t]] invariant vector
must belong to W0,κc . Finally a g[[t]] invariant element must also be h invariant, in particular its
weight must be 0 and hence no factors eRβ,m can occur. This concludes the proof.

6.3 Modules over a vertex algebra

Definition 6.3.1. A module over a vertex algebra V is a vector space M equipped with a linear
map

YM : V ⊗M→M((z))

or equivalently a linear map
YM(· , z) : V → End (M)[[z±1]]

with image contained in the subspace of fields. Such that YM(|0〉, z) = idM and for any elements
A,B ∈ V ,m ∈M the formal power series

YM(A, z)YM(B,w)m YM(B,w)YM(A, z)m YM(Y(A, z−w)B,w)m

are expressions of the same element in

M[[z,w]][z−1, w−1, (z−w)−1]

in the three corresponding spaces

M((z))((w)) M((w))((z)) M((w))((z−w))
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We list a couple of remarks without giving any proof. The facts we list if not trivial are easily
proven emulating proofs of the structure theory for vertex algebras a more detailed discussion
may be found in [FBZ04][Chapter 5]. We see that a lot of the equalities typical of vertex algebras
are still valid in the context of modules.

• There is a natural notion of morphism of modules. By definition a morphism of V modules
ϕ :M1 →M2 is a linear map which satisfies

ϕ(AM1
n · v) = AM2

n ·ϕ(v)

• We have the equality
YM(TA, z) = ∂zY

M(A, z)

this easily follows from the fact that TA = A−2|0〉 and from the equality (which follows from
the axioms taking B = |0〉)

YM(A, z) =
∑
n≥0

YM(A−n−1|0〉, w)(z−w)n

• It immediately follows from the axioms that if we denote by AMk the k-th coefficient of
YM(A, z)

[AMk , B
M
l ] =

∑
n≥0

(
k

n

)
(AnB)

M
k+l−n

• The usual vertex operator
Y : V → End (V)[[z±1]]

defines a structure of V module on V itself.

• Given a W module M and an homomorphism ϕ : V → W of vertex algebras, M gains a
natural structure of V module with the module structure defined by YMV = YMW ◦ϕ;

• Modules has natural compatible structures with respect to tensor product. IfM is aV module
and N is aW module thenM⊗N is naturally a V ⊗W module with

YM⊗N = YM ⊗ YN

with the obvious meaning.

• Given a V moduleM the linear map defined by

U(V)→ End (M) A[n] 7→ AMn

is a Lie algebra homomorphism.
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6.3.1 V modules and Ũ(V) modules

We prove here that the notion of a module over a vertex algebra V is equivalent to the notion of a
module over the complete associative algebra Ũ(V) introduced in Definition 4.2.3.

Theorem 6.3.1. Any module over a vertex algebra V is naturally a continuous module over the complete
algebra Ũ(V). Vice versa, any continuous module over Ũ(V) is naturally a V module. The category of
continuous Ũ(V) modules and the category of V module are equivalent.

Proof. See [FBZ04][Theorem 5.1.6]

In particular we see that for any Lie algebra g with an associative symmetric form κ. The
category of Vκ(g) modules and the category of Ũκ(ĝ) module coincide. In particular modules over
Vκ(g) and smooth ĝκ modules coincide.

We restate this in the following two sections, providing some more explicit descriptions.

π0 modules

We describe here the modules over the commutative vertex algebra π0, we will see that the notion
of a module over a vertex algebra and module over the associated commutative algebra slightly
differ.

Proposition 6.3.1. To give a module over π0 is equivalent to give a smooth module over the abelian Lie
algebra ĥ.

Proof. To give a π0 moduleM consists simply in defining fields

bi(z) ∈ End (M)[[z±1]]

such that all their Fourier coefficients commute. This is exactly like the construction of a smooth ĥ
module sending

bi,n ↔ hi,n

the condition of smoothness and field coincide.

For instance consider any character χ : h → C, consider a one dimensional representation Cχ
of the Lie subalgebra h[[t]] ⊕ C1 of ĥ where 1 acts as the identity, th[[t]] acts like 0 while h acts as
the multiplication by χ. Define

πχ := Ind ĥ
h[[t]]⊕C1Cχ

It is a naturally a smooth ĥ module and hence a π0 module.

Vκ(g) modules and ĝκ modules

We explore here the relationship between ĝκ modules and Vκ(g) modules.

Proposition 6.3.2. To give a module over Vκ(g) is equivalent to give a smooth module over the affine
Kac-Moody algebra ĝκ.
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Proof. Consider a Vκ(g) moduleM. Then the linear map

ĝk → End (M) Jan 7→ YM(Ja−1|0〉, z)n

is well defined (i.e. it extends from g[t, t−1] ⊕ C1 to g((t)) ⊕ C1) by the hypothesis that YM has
image contained in the subspace of fields. And a proof similar to lemma 5.5.2 shows that it is an
homomorphism of Lie algebras.

On the other hand given a smooth ĝκ moduleM define a structure of Vκ(g) by setting

YM(Ja−1|0〉, z) :=
∑
n∈Z

Janz
−n−1

where we interpret the Jan as endomorphisms ofM. And as always

YM(Ja1n1 . . . J
am
nm

|0〉, z) := 1

(−n1 − 1)!
. . .

1

(−nm − 1)!
: ∂−n1−1z Ja1n1 . . . ∂

−nm−1
z Jam(z) :

emulating a proof of theorem 4.2.1 one can prove that this actually defines a structure of Vκ(g)
module onM.

6.4 Wakimoto modules and applications to the center

We are ready to define the Wakimoto modules.

Definition 6.4.1. Let M be a Mg module and N a π0 module. We call M ⊗ N the Wakimoto
module associated to M and N. It is a ĝκc smooth module with the structure induced by the
tensor structure onM⊗N and the homomorphism

Vκc(g)→Mg ⊗ π0

We will focus on the study of the moduleW+
0,κc

, which we will soon define, since it is the most
important for our purposes.

Let Ag
++ be the subalgebra of Ag generated by the elements aα,n, a∗α,m with n > 0 and m ≥ 0.

Consider its trivial one dimensional module C|0〉 ′ where all the aα,n, a∗α,m act like 0 while 1 acts
as the identity consider the induced representation

M ′g := IndA
g

Ag
++

C|0〉 ′

it has a basis of monomials of the form

a∗α1,n1 . . . a
∗
αk,nk

aα1,m1 . . . aαk,ml |0〉 ′ ni < 0,mj ≤ 0

it is naturally an Ãg module and aMg module.
Next consider ρ : h→ C to be the sum of the fundamental weights ωi : h→ C. Consider π−2ρ

as a π0 module.
We define the ĝκc module

W+
0,κc

:=M ′g ⊗ π−2ρ

114



it has a basis of monomials of the following form

bi1,r1 . . . bis,rsa
∗
α1,n1

. . . a∗αk,nkaβ1,m1 . . . aβl,ml ni, ri < 0,mj ≤ 0

obtained from the structure of Mg ⊗ π0 module and precomposing with the involution of ĝκc
defined by ei,n 7→ fi,n, hi,n 7→ −hi,n, in particular the action of ĝκc is described by the following
formulas

ei(z) 7→ ∑
β∈Φ+

: Qiβ(a
∗(z))aβ(z) : + ci∂za

∗
αi
(z) + a∗αi(z)bi(z)

hi(z) 7→ ∑
β∈Φ+

β(hi) : a
∗
β(z)aβ(z) : −bi(z)

fi(z) 7→ aαi(z) +
∑
β>αi

: Piβ(a
∗(z))aβ(z) :

Given a character λ : h→ C consider the Verma module

Mλ,κc := Ind
ĝκc
n̂+⊕h⊕C1Cλ

where n̂+ = n+⊕tg[[t]] and Cλ is the n̂+⊕h⊕C1 module where n̂+ acts trivially, h acts according to λ
and 1 acts like the identity. These Verma modules are the analogue of the classical Verma modules
for a finite dimensional simple Lie algebra g. If the affine case n̂+ plays the role of the upper
nilpotent subalgebra while h plays the role of the maximal toral subalgebra. These representations
are well studied and essential in the representation theory of the affine algebra ĝκc .

We will need the following theorem which characterizes the weights of irreducible subquo-
tients of Verma modules. It can be found in [KK79, Theorem 2].

Theorem 6.4.1 (Kac-Kazhdan). A weight (µ, n) appears as the highest weight of an irreducible subquo-
tient of the Verma module Mλ̂ where λ̂ = (λ, 0) if and only if n ≤ 0 and either λ = µ or there exists a
sequence of weights µ0, . . . , µm such that µ0 = λ and µi+1 = µi ±miβi for some positive roots βi and
positive integersmi which satisfy

2(µi + ρ, βi) = mi(βi, βi)

where (·, ·) is the inner product on h∗ induced by the Killing form.
In other words the weight (µ, n) appears as the highest weight of an irreducible subquotient of Mλ̂ if

and only if n ≤ 0 and there exists an element w in the Weyl group of g such that

µ = w(λ+ ρ) − ρ

Proposition 6.4.1. The Wakimoto moduleW+
0,κc

is isomorphic to the Verma module M0,κc .

Proof. The vector |0〉 ′ ⊗ |− 2ρ〉 satisfy , by direct computation

n̂+ ⊕ h ·
(
|0〉 ′ ⊗ |− 2ρ〉

)
= 0 1 · |0〉 ′ ⊗ |− 2ρ〉 = |0〉 ′ ⊗ |− 2ρ〉

by the properties of induced module we obtain a ĝκc -linear map

M0,κc →W+
0,κc
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Next notice that both modules are actually modules for the extended algebra ĝκc o CL0 where
L0 = −t∂t. In addition a basis for M0,κc is given by the PBW theorem:

hi1,r1 . . . his,rseα1,n1 . . . eαk,nkfβ1,m1 . . . fβl,ml ni, ri < 0,mj ≤ 0

since for any h ∈ h we have h · a∗α,n = α(h)a∗α,n and h · aα,n = −α(h)aα,n while L0 · a∗α,n =
−na∗α,n and L0 · aα,n = −naα,n, we find that the characters of M0,κc and W+

0,κc
under the action

of h⊕CL0 are equal. To show that the above morphism is an isomorphism its enough to show that
it is surjective, or equivalently thatW+

0,κc
is generated by |0〉 ′ ⊗ |− 2ρ〉 as a ĝκc -module.

Suppose by contradiction that W+
0,κc

is not generated by |0〉 ′ ⊗ |− 2ρ〉. Consider the Lie subal-
gebra n̂− := n− ⊕ t−1g[t−1]. We first claim that

W+
0,κc

/n̂−W
+
0,κc

has a non zero weight component of degree ≤ 0. Indeed consider its ĝκc submodule

W ′ = U(ĝκc)|0〉 ⊗ |− 2ρ〉 (W+
0,κc

And consider an homogeneous vector w ∈ W+
0,κc

\W ′ of maximal weight. Then w /∈ n̂−W
+
0,κc

.
Suppose by contradiction that this is false, them all the homogeneous factors wi in an expression
of

w =
∑
i

xiwi with xi ∈ n̂−

must be of a weight higher than the weight of w and therefore must belong to W ′ then since W ′

is a submodule the same must be true for w so we deduce that w ∈W ′. This contradiction proves
thatw /∈ n̂−W

+
0,κc

. In particular, sincewwas taken to be homogeneous, there is a non zero weight
component in W+

0,κc
/n̂−W

+
0,κc

. Since W+
0,κc

is the direct sum of its weight components which are
finite dimensional, the same must be true for its quotientW+

0,κc
/n̂−W

+
0,κc

in particular writing

W+
0,κc

/n̂−W
+
0,κc

=
⊕
(γ,n)

(
W+
0,κc

/n̂−W
+
0,κc

)
(γ,n)

we find that there is a non zero weight (γ, n) such that
(
W+
0,κc

/n̂−W
+
0,κc

)
(γ,n)

6= 0 and considering
any non zero linear functional (

W+
0,κc

/n̂−W
+
0,κc

)
(γ,n)

→ C

we get a non zero linear n̂−-invariant functional ϕ : W+
0,κC

→ C of weight different from 0. Next
notice that there is a basis ofW+

0,κc
formed by the ordered monomials

hi1,r1 . . . his,rsfα1,n1 . . . fαk,nka
∗
α1,m1

. . . a∗αl,ml |0〉
′ ⊗ |− 2ρ〉 (6.1)

this follows from the explicit formulas above, noticing that the change of coordinates from the
classical one to this one is triangular. In particular the action of L−b− = t−1b−[t

−1] is free. A
n̂− invariant linear functional must be also L−b−-invariant and using the basis introduced above
we easily see that the space of coinvariants with respect to L−b− is isomorphic to the subspace
spanned by the monomials

a∗α1,m1 . . . a
∗
αl,ml

|0〉 ′ ⊗ |− 2ρ〉
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The induced functional ϕ : W+
0,κc

/L−b−W
+
0,κc
→ C is by hypothesis non zero and homogeneous.

Since it must be nonzero on some homogeneous vector we find that the weight ofϕmust be of the
form

−
∑
j

(−βj, nj) with βj > 0,nj < 0

in addition since by construction the weight of ϕ is not 0 this sum is not empty.
Now ϕ induces a n̂−-invariant functional on M0,κc or in other words a lowest weight vector

ϕ ∈M∨
0,κc

the weight of lowest weight vectors on M∨
0,κc

are similarly described as in [KK79] above. So we
must have

0 6=
∑
i

βi = w(ρ) − ρ

for some w in the Weyl group, and since for any w ∈W the element w(ρ) − ρ is a sum of negative
simple roots

∑
i βi cannot be of this form. This contradiction concludes the proof.

This characterization has incredibly useful. Using nice basis as in 6.1 we can characterize the
space of b̃+ := b+ ⊕ tg[[t]] invariants of the Verma Module M0,κc

Lemma 6.4.1. The space of b̃+-invariants ofW+
0,κc

is equal to the space π−ρ ⊂W+
0,κc

Proof. Consider the operators fRα,n introduced in Proposition 5.4.4. we call them fRα,n instead
of eRα,n because we are considering an action of ĝκc obtained by the free field realization pre-
composed with the involution.

Analogously to 6.1 we find thatW+
0,κc

has a basis of the form

bi1,r1 . . . bis,rsf
R
α1,n1

. . . fRαk,nka
∗
β1,m1

. . . a∗βl,ml |0〉
′ ⊗ |− 2ρ〉

We write for convenience
b[i],[r]f

R
[α],[n]a

∗
[β][m]

where, for instance, [n] stands for the ordered vector (n1, . . . , nk). Consider now a b̃+ invariant
vector v and write it as

v =
∑

([i],[r]),([α],[n])

b[i],[r]f
R
[α],[n]v

∗
[i],[r],[α],[n]

with v∗[i],[r],[α],[n] ∈ Span(a
∗
[β],[m]). Such an expression is unique. Since v in b̃+ invariant it is in

particular L+n− = tn−[[t]] invariant. Since the action of L+n− commutes with the action of the
bi,n (by the formulas) and with the action of fRα,m by construction we find (by uniqueness of the
above expression) that

L−n−v
∗
[i],[r],[α],[n]] = 0

We can prove analogously to Proposition 5.1.2 that as an L+n− module W+,∗
0,κc

= Span(a∗[β],[m]) is
isomorphic to

U(L+n−)
∨
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and therefore its space of invariants is one dimensional and spanned by 1. This proves that a b̃+
invariant vector must be of the form

v =
∑

([i],[r]),([α],[n])

b[i],[r]f
R
[α],[n]

But it must also be annihilated by the Lie subalgebra h ⊂ b̃+. Recall that by the remarks on the
right action we have

[h0, f
R
α,n] = α(h)

we find that vmust be of the form
v =

∑
([i],[r])

b[i],[r]

that is to say v ∈ π−2ρ. This proves
(W+

0,κc
)b̃+ ⊂ π−2ρ

Finally since b̃+ kills the vacuum vector and commutes with the action of bi,n we find that also

π−2ρ ⊂ (W+
0,κc

)b̃+

6.5 Semi-infinite parabolic induction 2

With the language of modules we are now ready to use theorem 5.7.1 to construct what we will
call the semi-infinite parabolic induction functor.

Consider a parabolic subalgebra p ⊂ g and let p = r⊕m be a Levi decomposition, m = ⊕si=1mi⊕
m0 a decomposition of m where the mi are simple Lie algebras for i = 1, . . . , s, m0 is abelian and
all the factors are orthogonal with respect to the killing form on g. Let κi a set of inner products
on mi. We may consider the Lie algebra m̂(κi) and construct as usual its vacuum module V(κi)(m).
In the same fashion of proposition 6.3.2 there is a correspondence between smooth m̂(κi) modules
and V(κi)(m) modules.

We have the following corollary of theorem 5.7.1.

Corollary 6.5.1. For any smooth m̂(κi)-module R, where the inner products κi satisfy the conditions of
theorem 5.7.1, the tensor product

Mg,p ⊗ R

is naturally a Vκ+κc(g) module and hence a smooth ĝκ+κc module.
In addition to every m̂(κi)-morphism f : R1 → R2 the induced morphism

id⊗ f :Mg,p ⊗ R1 →Mg,p ⊗ R2

is an homomorphism of Vκ+κc(g) modules and hence of ĝκ+κc -modules.

Thus we obtain a functor from the category of smooth m̂(κi) modules to the category of smooth
ĝκ+κc modules. We call this functor the semi-infinite parabolic induction functor. And we will
call the smooth ĝκ+κc moduleMg,p ⊗ R the generalized Wakimoto module corresponding to R.
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6.6 Invariants

The goal of this section is to prove that

gr ζ(g) = Inv Jg∗

we will extensively use the facts we studied for the Wakimoto moduleW+
0,κc

.
In order to prove this statement we compare the ĝκc module Vκc(g) to the Verma module

M0,κc .
The vacuum vector |0〉 ∈ Vκc(g) is killed by the Lie subalgebra b̃+ = n̂+ ⊕ (h ⊗ 1) and 1 acts

like the identity on it. Therefore we obtain a homomorphism of ĝκc modules

M0,κc → Vκc(g)

induced by the embedding C0 → C|0〉 → Vκc(g) which is an homomorphism of b̃+ modules by
the above remarks. This is of course surjective (apply the PBW theorem).

Remark 6.6.1. The following equality between spaces of invariants hold

Vκc(g)
b̃+ = Vκc(g)

g[[t]] gr
(
Vκc(g)

)b̃+
= gr

(
Vκc(g)

)g[[t]]
Indeed we only need to show that every b̃+ invariant vector is also g invariant. This is true

because Vκc(g) and grVκc(g) are both direct sum of finite dimensional representations of g. For a
finite dimensional representation V of g we have

Vg = Vb+

and this is enough to show the remark.

To proceed towards our goal of showing that gr ζκc(ĝ) = Inv Jg∗ we consider the following
diagram

gr
(
Mb̃+

0,κc

)
gr
(
Vκc(g)

g[[t]]
)

gr
(
M0,κc

)b̃+
gr
(
Vκc(g)

)g[[t]]
We will show that the left vertical arrow is an isomorphism while the lower horizontal arrow

is surjective. This easily implies that the right vertical arrow is surjective as well, since we already
knew it is an embedding we obtain the sought after equality

gr (ζκc(g)) = Inv Jg
∗

we start by describing the space gr
(
M0,κc

)b̃+ .
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Proposition 6.6.1. The graded space gr (M0,κc) is isomorphic, as a b̃+ module to the space of functions on
the closed subscheme

Jg∗(−1) ⊂ L−1g
∗

defined by the equations Ja0 = 0 for Ja ∈ n+ ⊕ h.
In addition the space of b̃+ invariant functions on this closed subscheme is equal to

C[Pi,mi ]i=1,...,l;mi<di

Proof. By the PBW theorem

grM0,κc = Sym
(
g((t))/(tg[[t]]⊕ b+)

)
= C[Jg∗(−1)]

is addition it is clear that the subspace Jg∗(−1) ⊂ L−1g∗ is preserved by the action of b̃+ and the
isomorphism above is b̃+ invariant.

Using the isomorphism
(·t) : L−1g∗→ Jg∗

we restrict ourselves to compute the space of invariants of the closed subscheme

Jg∗(0) → Jg∗ Jg∗(0) =
{
Ja−1 = 0 : J

a ∈ n+ ⊕ h
}

Consider the B̃+, the subgroup of JG defined as

B̃+(R) =
{
g ∈ G(R[[t]]) : g(0) ∈ B(R)

}
It is an affine closed subgroup of JG, its Lie algebra is then isomorphic to b+ ⊕ tg[[t]] = b̃+. We
also consider its finite dimensional analogues

B̃+,n ⊂ JnG B̃+,n(R) =
{
g ∈ G(R[t]/tn) : g(0) ∈ B(R)

}
These are all closed subgroups of JnG. Recall that in Lemma 4.5.1 we proved that the map

Jnp : Jn(g
∗
reg)→ JnP

is a geometric quotient for every n ≥ 0. Our first goal to deduce from this that the map

{Ja−1 = 0 : J
a ∈ b+} =: Jn(g

∗
reg)(0) → JnP(0) := {Pi,−1 = 0}

is well defined and a geometric quotient for the action of B̃+,n. Applying [MFK94][Proposition
0.2] to prove that this is a geometric quotient it suffices to prove that the map is surjective on C
points and that the C fibers are single B̃+,n(C) orbits.

We will describe these maps using the isomorphism g∗ = g induced by the Killing form. Notice
that since greg is an open subset of g we have

Jn(greg)(R) = greg(R) + t
g[t]

tn
⊗ R
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this follows from the fact that for an open subscheme U ⊂ X we have the equality U(R[t]/tn) =
{x ∈ X(R[t]/tn : x(0) ∈ U(R)}. Call n+,reg := n+ ∩ greg, we naturally have

Jn(g
∗
reg)(0) = n+,reg(R)⊕ t

g[t]

tn
⊗ R

Now to see that the restriction
Jn(g

∗
reg)(0) → JnP(0)

By classical results about the space of invariants we have that the ideal generated by the g invariant
polynomials in greg is the ideal of functions vanishing on the nilpotent cone. Thus every nilpotent
element lies is the set of zeroes of the invariant polynomials so for every x ∈ Jn(g∗reg)(0) we deduce
Pi,−1(x) = Pi(x(0)) = 0 and the restriction is well defined.

To see surjectivity consider a point u ∈ JnP(0) and a point x ∈ Jgreg over it. By assumption
Pi(x(0)) = 0 for every i so x(0) is nilpotent and regular and therefore there exists a g ∈ G(C) such
that (g · x)(0) ∈ n+ or in other words g · x ∈ Jn(greg)(0) and since Jnp is G invariant g · x 7→ u.

Finally to see that the fibers are single B̃+,n orbits consider two points x, y ∈ Jn(greg)(0) such
that their image in JnP is the same. Since the map Jn(greg) → JnP has fibers consisting of single
JnG(C) orbits we know that there exists an element g ∈ JnG(C) such that g · x = y. In particular
both x(0) and (g · x)(0) = g(0) · x(0) lie in n+,reg. Since there is only one Borel subalgebra bx such
that x(0) ∈ bx and g(0) · x(0) ∈ bgx we must have bx = b+ and bgx = b+ = g(0)b+ so g(0) must
normalize b+ and therefore it must lie in B+. This proves that g ∈ B̃+,n.

We are now able to deduce that since Jnp : Jn(g
∗
reg)(0) → JnP(0) is a geometric quotient we

have the following equality

C[Jn(g∗reg)(0)]b⊕tg[t]/t
n

= C[JnP(0)]

From this we deduce that the natural map

C[Pi,n]n<−1 → C[Jg∗(0)]
b̃+

is an isomorphism.
To see injectivity is enough to notice that for every n ≥ 0 the composition

C[Pi,n]n<−1 → C[Jg∗(0)]
b̃+ → C[Jn(g∗reg)(0)]b⊕tg[t]/t

n

= C[JnP(0)]

Is exactly the quotient of C[Pi,n] by the ideal generated by (Pi,m)m<−n−1. To see surjectivity it
suffice to show that every b̃+ invariant function on J(g∗reg)(0) come from a b ⊕ tg[t]/tn invariant
function on Jn(g∗reg)(0). This can be done emulating the end of the proof of Theorem 4.5.2.

As an immediate corollary we obtain that the map

gr
(
M0,κc

)b̃+ → gr
(
Vκc(g)

)g[[t]]
is surjective.

In addition we can easily compute the character of under the L0 action of both gr
(
Mb̃+

0,κc

)
=

gr (π−2ρ) and gr
(
M0,κc

)b̃+ and see that they are actually equal, so the immersion

gr
(
Mb̃+

0,κc

)
↪→ gr

(
M0,κc

)b̃+

is actually an isomorphism. Combining these statements we obtain
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Proposition 6.6.2. The following equality between graded spaces holds

gr ζ(g) = Inv Jg∗

in particular the character of gr ζ(g) and hence also the character of ζ(g) under the action of L0 is given by
the following formula

ch ζ(g) =

l∏
i=1

∏
ni≥di+1

1

1− qni
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Chapter 7

Screening Operators

7.1 Overview

The goal of this chapter is the construction of certain operators

Si :W0,κc → W̃
(i)
0,0,κc

where W0,κc = Mg ⊗ π0 and W̃(i)
0,0,κc

are certain ĝκc modules that we are going to define.
These are called the screening operators (or screening operators of the second kind, following
[Fre07, Chapter 7.3]): they intertwine with the action of ĝκc and annihilate the vacuum vector in
Mg ⊗ π0 =W0,κc .

It follows that the vertex subalgebra Vκc(g) is contained in the intersection of the kernels of
these operators. In particular since the center ζ(ĝ) is contained in the abelian subalgebra π0 it is
also contained the intersection of the kernels of the operators

Vi[1] := (Si)|π0

We are going to write down explicit formulas for the screening operators and therefore for the
operators Vi[1] as well.

In the next chapter we will give a geometric interpretation of the operators Vi[1], this will
finally allow us to identify the center ζ(ĝ) with the algebra of functions on the space of LG Opers
on the formal disc D.

7.2 Intertwining Operators

We start by giving the definition of a particular kind of intertwining operators in the context of a
conformal vertex algebra V and a V-moduleM.

Remark 7.2.1. Consider a conformal vertex algebra V of central charge c with conformal vector
ω. Then any V-moduleM carries an action of the Virasoro algebra of central charge c through the
operators

Ln := ωMn where YM(ω, z) =
∑
n∈Z

ωMn z
−n−2
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We call T := ωM−1 ∈ End (M)

Proof. The commutation relations of theωMn are easily described by the axioms of a module.

Definition 7.2.1. Let V be a conformal vertex algebra and let T ∈ End (M) defined as above. We
define a linear map

YV,M :M→ Hom(V,M)[[z±1]] YV,M(A, z)B := ezTYM(B,−z)A

this is an example of an intertwining operator.

The fundamental properties of YV,M are described in the following proposition.

Proposition 7.2.1. Let V be a confomal vertex algebra,M a V-module and YV,M as above. Then given any
A,B ∈ V and any B ∈M there exists an element

f ∈M[[z,w]][z−1, w−1, (z−w)−1]

such that

YM(A, z)YV,M(B,w)C YV,M(B,w)Y(A, z)C

YV,M(YV,M(B,w− z)A, z)C YV,M(YM(A, z−w)B,w)C

are expansions of f in

M((z))((w)) M((w))((z)) M((z))((w− z)) M((w))((z−w))

respectively.

Proof. See [FHL93, Proposition 5.1.2]

Corollary 7.2.1. Let V,M, YV,M as above. The following hold:

YM(A, z)YV,M(B,w) − YV,M(B,w)Y(A, z) =
∑
k≥0

1

k!
YV,M(AMk B,w)∂

k
wδ(z−w)

In particular

AMn ◦ BV,Mm − BV,Mm ◦An =
∑
k≥0

(
n

k

)
(AMk B)

V,M
n+m−k (7.1)

Proof. Analogous to the proof of corollary 3.2.2.

We will write the above formula, abusing notation as

[An, Bm] =
∑
k≥0

(
n

k

)
(AkB)n+m−k
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7.2.1 Example: intertwining operators for πβ0
To be more concise we write β := k + 2 ∈ C in what follows we are interested in the cases for
which k 6= kc, so in terms of β we are assuming that β 6= 0. As a useful example we describe an
intertwining operator in the case of the conformal vertex algebra πβ0 for β 6= 0 and its module πβ2β.

Recall that πβ0 is the vacuum module associated to the one dimensional abelian Lie algebra
spanned by an element b with the symmetric form given by κ(b, b) = 2β. So the elements bn
satisfy the relations

[bn, bm] = n2βδn,−m

Its conformal vector is ω = 1
4β
b−1b−1|0〉 − 1

2β
b−2 and the translation operator is therefore given

by T = 1
4β

∑
n∈Z bnb−n−1.

We want to compute the intertwining operator

V2β(z) ∈ Hom(πβ0 , π
β
2β)[[z

±1]] V2β(z) := Yπβ
0
,πβ
2β
(|2β〉, z)

Note that by formula 7.1 we have

[bn, V2β(z)m] =
∑
k≥0

(
n

k

)
(bk|2β〉)

πβ
0
,πβ
2β

n+m−k = 2βV2β(z)n+m

or more compactly
[bn, V2β(z)] = 2βz

nV2β(z)

Since the action of the operators bn : n < 0 generates πβ0 the commutation relations above together
with the datum V2β(z)|0〉 uniquely determines V2β(z).

Proposition 7.2.2. The operator V2β(z) is described by the following formula.

V2β(z) = T2βexp

(∑
n<0

−
bn

n
z−n

)
exp

(∑
n>0

−
bn

n
z−n

)

where T2β : πβ0 → πβ2β is the operator commuting with all bn : n < 0 that sends |0〉 7→ |2β〉.

Proof. Call e(z) the formula of the right hand side. By the remarks above, to show that e(z) =
V2β(z) it suffices to show that

e(z)|0〉 = V2β(z)|0〉 and [bn, e(z)] = 2βz
ne(z)

To show the first equality recall that by definition V2β(z)|0〉 = ezT |2β〉. And notice that

e(z)|0〉 = T2βexp
(
−
∑
n<0

bn

n
z−n

)
|0〉

Since it is clear that e(z)|0〉 = |2β〉+ z(. . . ) we can restrict ourselves to prove that

Te(z)|0〉 = ∂ze(z)|0〉 = T2β
(∑
n<0

bnz
−n−1

)
exp

(
−
∑
n<0

bn

n
z−n

)
|0〉

125



In order to do this notice that by definition we have [b0, T2β] = 2βT2β and [bm, T2β] = 0 for
everym 6= 0 and therefore [T, T2β] = T2βb−1 in addition notice that[

T,−
∑
n<0

bn

n
z−n

]
=
∑
n<0

bn−1z
−n =

∑
n<−1

bnz
−n−1

It easily follows that

Te(z)|0〉 = [T, T2β]exp

(
−
∑
n<0

bn

n
z−n

)
|0〉+ T2β

[
T, exp

(
−
∑
n<0

bn

n
z−n

)]
|0〉

= T2β

(
b−1exp(. . . ) +

( ∑
n<−1

bnz
−n−1

)
exp(. . . )

)
|0〉 = ∂z

(
e(z)|0〉

)
We are left to compute the commutation relations [bn, e(z)]. We find that

• (n = 0) The operator b0 commutes with the ‘exponential parts’ while [b0, T2β] = 2βT2β so
we have

[b0, e(z)] = 2βe(z)

• (n < 0) The operator bn : n < 0 commutes with T2β and with the first exponential while[
bn,−

∑
n>0

bm

m
z−m

]
= 2βzn

and we finally find
[bn, e(z)] = 2βz

ne(z)

• (n > 0) The same reasoning of the previous point applies to the case n > 0 and we get

[bn, e(z)] = 2βz
ne(z)

This concludes the proof.

7.3 The sl2 case

We start by working out the sl2 case. This is a crucial for us since the operators Si are actually
obtained with the semi-infinite parabolic induction functor from the sl2 case.

First we need to define a new vertex algebra.

7.3.1 Friedan-Martinec-Shenker bosonization

Consider the Lie algebra with generators pn, qm with n,m ∈ Z and a central element 1 with the
following commutation relations

[pn, pm] = nδn,−m1 [qn, qm] = −nδn,−m1 [pn, qm] = 0
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For λ, µ ∈ C let Πλ,µ be the induced representation from the Lie subalgebra spanned by
pm, qn, 1 with n,m ≥ 0 of the one dimensional module generated by a vector |λ, µ〉where

pn|λ, µ〉 = λδn,0|λ, µ〉 qm|λ, µ〉 = µδm,0|λ, µ〉 1|λ, µ〉 = |λ, µ〉

For λ, µ, λ ′, µ ′ such that λλ ′ − µµ ′ ∈ Z consider the vertex operators

Vλ,µ(z) ∈ Hom(Πλ ′,µ ′ , Πλ ′+λ,µ ′+µ)[[z
±1]]

defined by the formulas

Vλ,µ(z) := Tλ,µz
λλ ′−µµ ′

exp
(
−
∑
n<0

λpn + µqn
n

z−n
)
exp

(
−
∑
n>0

λpn + µqn
n

z−n
)

Using a little bit of an abuse of notation we will write eλu+µv for the operator Vλ,µ(z). Here u
should be understood as the antiderivative of p(z) while v should be understood as the antideriva-
tive of q(z). For any γ ∈ C let

Πγ :=
⊕
n∈Z

Πn+γ,n+γ

we define the structure of a vertex algebra on Π0 with the vertex operators Vλ,µ(z). We define

Y(|n,n〉), z) := Vn,n(z) : Π0 → Π0

and check that the fields Y(|n,n〉), b(z) are mutually local and satisfy all the axioms of the recon-
struction theorem. Every Πγ becomes naturally a Π0 module.

LetM :=Msl2 then we have an embedding.

Theorem 7.3.1. There is a (unique) embedding of vertex algebras M ↪→ Π0 such that the fields a(z) and
a∗(z) are mapped to the fields

ã(z) = eu+v ã∗(z) = − : p(z)e−u−v :

We consider the following modules:

Definition 7.3.1. Let γ, λ ∈ C we define

W̃γ,λ,k := Πγ ⊗ πβλ

this is naturally a Π0 ⊗ πβ0 = W̃0,0,k-module, hence aM⊗ πβ0 -module and hence a ŝl2k-module

7.3.2 Intertwining operators

Definition 7.3.2. Define the intertwining operator

S̃k(z) := Y
W̃0,0,k,W̃−β,2β,k(|− β〉 ⊗ |2β〉, z) = ã(z)−βV2β(z)

We justify this notation with the following remark.

127



Remark 7.3.1. It is possible to prove, analogously to Proposition 7.2.2 that the intertwining oper-
ator associated to |− β,−β〉 ∈ Π−β is exactly

V−β,−β(z) = T−β,−βexp

(∑
n<0

βpn + βqn
n

z−n
)
exp

(∑
n>0

βpn + βqn
n

z−n
)

Finally, we follow the notation ã(z) = eu+v and denote y ã(z)−β := e−βu−βv = V−β,−β(z)

We denote by v−β,2β = |− β〉 ⊗ |2β〉 for simplicity.

Lemma 7.3.1. The following OPEs hold

[e(z), S̃k(w)] = 0

[h(z), S̃k(w)] = 0

[f(z), S̃k(w)] =
Y(βTv−β−1,2β, w)

(z−w)
+
Y(βv−β−1,2β, w)

(z−w)2

Proof. By corollary 7.2.1 we know that for any X ∈ sl2

[X(z), S̃k(w)] =
∑
n≥0

Y(Xnv−β,2β, w)

(z−w)n+1

Therefore to compute the desired OPE we need to compute the polar parts (in z) of X(z)v−β,2β for
X ∈ g. Recall that the morphism Vk(sl2)→M⊗ πβ0 maps

e(z) 7→ a(z)

h(z) 7→ −2 : a∗(z)a(z) : +b(z)

f(z) 7→ − : a∗(z)2a(z) : +k∂za
∗(z) + a∗(z)b(z)

The corresponding fields on Π0 ⊗ πβ0 are given therefore by

e(z) 7→ ã(z)

h(z) 7→ −2 : ã∗(z)ã(z) : +b(z)

f(z) 7→ − : ã∗(z)2ã(z) : +(β− 2)∂zã
∗(z) + ã∗(z)b(z)

where, as before
ã(z) = eu+v ã∗(z) = − : p(z)e−u−v :

We proceed with our calculations by steps, paying specific attention on the polar parts of the
series we are calculating. As the notation is concerned we write

U((z)) 3 a(z) =
n∑

i=−N

aiz
i +O(zn+1)

if a(z) −
∑n
i=−N aiz

i ∈ zn+1U[[z]] for any vector space U.
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1. Notice that v−β,2β is killed by all pn, qn, bn : n > 0while we have

p0v−β,2β = q0v−β,2β = −βv−β,2β

b0v−β,2β = 2βv−β,2β

2. We start by computing enu+nvv−β,2β:

enu+nvv−β,2β = v−β+n,2β + z(np−1 + nq−1)v−β+n,2β +O(z2)

Indeed

Tn,nexp
(
−
∑
m<0

n
pm + qm

m
z−m

)
exp

(
−
∑
m>0

n
pm + qm

m
z−m

)
v−β,2β

= Tn,nexp
(
−
∑
m<0

n
pm + qm

m
z−m

)
v−β,2β

= v−β+n,2β + z(np−1 + nq−1)v−β+n,2β +O(z2)

Where we used the fact that v−β,2β is killed by all pn, qn with n > 0.

3. From point 2we immediately deduce that

e(z)−v−β,2β = 0

so the first OPE is proved;

4. We consider now ã∗(z), we claim that:

ã∗(z)v−β,2β =
β

z
v−β−1,2β +

(
− β(p−1 + q−1) − p−1

)
v−β−1,2β +O(z)

Indeed

ã∗(z)v−β,2β =
(
− p(z)+e

−u−v − e−u−vp(z)−
)
v−β,2β =

−p−1v−β−1,2β +O(z) − e−u−v
p0

z
v−β,2β =

−p−1v−β−1,2β +O(z) − e−u−v
−β

z
v−β,2β

and we conclude using the expression of e−u−vv−β,2β written in point 2;

5. We are now ready to compute the OPE relative to h(z) and we claim that once again

h(z)−v−β,2β = 0

h(z)v−β,2β = −2
(
ã∗(z)+ã(z) + ã(z)ã

∗(z)−
)
v−β,2β + b(z)v−β,2β

We compute these two terms separately

(a)

−2
(
ã∗(z)+ã(z) + ã(z)ã

∗(z)−
)
v−β,2β = −2ã(z)ã∗(z)−v−β,2β +O(1)

= −2
β

z
v−β,2β +O(1)
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(b)

b(z)v−β,2β =
2β

z
v−β,2β +O(1)

Their sum is clearly regular;

6. To compute f(z)v−β,2β we need to compute three separate terms

(a) (: ã∗(z)2ã(z) : v−β,2β) Note first that

: ã∗(z)2ã(z) := ã∗(z)2+ã(z) + 2ã
∗(z)+ã(z)ã

∗(z)− + ã(z)ã∗(z)2−

So using the properties we already proved so far we have

− : ã∗(z)2ã(z) : v−β,2β = O(1) − 2ã∗(z)+ã(z)
β

z
v−β−1,2β − ã(z)

β(β+ 1)

z2
v−β−2,2β

=
2β

z
(p−1 + β(p−1 + q−1))v−β−1,2β −

β(β+ 1)(p−1 + q−1)

z
v−β−1,2β

β(β+ 1)

z2
v−β−1,2β +O(1)

(b) Knowing ã∗(z)−v−β,2β we easily find that

(β− 2)∂zã
∗(z)v−β,2β = −

(β− 2)β

z2
v−β−1,2β

(c) Finally

ã∗(z)b(z)v−β,2β =
2β2

z2
v−β−,2β +

1

z

(
− 2β(p−1 + β(p−1 + q−1)) + βb−1

)
v−β−1,2β

Summing all these contributes together we find

f(z)v−β,2β =
β
(
− (β+ 1)(p−1 + q−1) + b−1

)
z

v−β−1,2β +
β

z2
v−β−1,2β

By analogous calculations we find that the coefficient of z−1 is exactly βTv−β−1,2β therefore
we proved the desired formula for the OPE [f(z), Sk(w)].

Corollary 7.3.1. The residue

Sk :=

∫
Sk(w)dw

intertwines with the action of ŝl2k on both modules.

Proof. By the properties of YW̃0,0,k,W̃−β,2β,k we have

Y(βTv−β−1,2β, w) = ∂wY(βv−β−1,2β, w)

So the OPE relative to f(z) may be written as

[f(z), Sk(w)] = ∂w

(
Y(βv−β−1,2β, w)

(z−w)

)
hence its residue is 0
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7.4 Intertwining operators at the critical level

Our goal is to define an operator analogous to Sk when k = kc. We will construct it as the ‘limit’
of the operators Sk for k → kc. To construct this limit we will slightly modify the definition
of all vertex algebras involved in order to make them C[β]-vertex algebras, where β is now an
indeterminate, such that their specialization to β = k brings back the usual vertex algebras of level
k.

To construct the limit of the intertwining operators we will need the following lemma.

Lemma 7.4.1. LetM,N be (not necessarily finite dimensional) free C[x]-modules. And let ϕ :M→ N be
an homomorphism of C[x]-modules.

Then if the specialization ϕλ : M/(x − λ) → N/(x − λ) is 0 for infinitely many λ ∈ C then ϕ is
identically 0.

Proof. Let (mi)i∈I, (nj)j∈J be basis for M and N respectively. In addition consider polynomials
Pji(x) ∈ C[x] such that

ϕ(mi) =
∑
j∈J

Pji(x)nj

note that for a fixed index i only a finite number of Pji as j varies in not 0.
Now after we take the specialization at x = λ the elements mi form a C basis for M/(x − λ),

and the elements nj form a C basis for N/(x− λ). The homomorphism ϕλ is easily described as

ϕλ(mi) =
∑
j∈J

Pji(λ)nj

Therefor we find that by the hypothesis of ϕλ being 0 for infinitely many λ for every couple (i, j)

the polynomial Pji(x) has infinitely many zeros (namely the complex numbers λ ∈ C for which
ϕλ = 0) and is therefore 0.

7.4.1 C[β] vertex algebras

We define here C[β]-vertex algebra analogues of the vertex algebras Vκ(g) and πβ0 . From now on
β has to be intended as a variable and not as the complex number k+ 2 as in the previous section.

Let g a Lie algebra equipped with an associative symmetric form κ consider the C[β]-Lie alge-
bra Lg[β] = Lg⊗ C[β]. Consider its one dimensional extension

ĝβκ := Lg[β]⊕ C[β]1

with the bracket defined C[β] linearly by the formula

[X⊗ f(t)⊗ p(β), Y ⊗ g(t)⊗ q(β)] := p(β)q(β)
(
[X, Y]⊗ f(t)g(t) − βκ(X, Y)

∫
f(t)g ′(t)dt

)
Since the bracket is C[β]-linear we may consider the specialization of ĝβ at β = k. The result is

clearly the affine algebra ĝkκ. When g is simple an κ = κg we call this Lie algebra simply ĝβ.
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We move on defining the associated vertex algebra. Consider the C[β]-subalgebra g[[t]][β] ⊕
C[β]1 ⊂ ĝβκ. and its trivial module C[β]|0〉, where as always 1 acts as the identity. Define

Vβκ(g) := Ind
ĝβκ
g[[t]][β]⊕C[β]1C[β]|0〉

by the PBW theorem it has a C[β] basis of lexicographically ordered monomials of the form

Ja1n1 . . . J
am
nm

|0〉

defining the vertex operators C[β]-linearly as in the case of Vκ(g) defines a structure of C[β]
vertex algebra on Vβκ(g). We denote

Vβ(sl2) and πβ0

the vertex algebras built with the above construction from sl2 with the normalized killing form
1/4κsl2 and of the one dimensional abelian Lie algebra spanned by bwith the form κ(b, b) = 2.

Proposition 7.4.1. There exists an homomorphism of C[β]-vertex algebras

Vβ(sl2)→M⊗ πβ0

such that

e−1|0〉 7→ a−1|0〉
h−1|0〉 7→ (

− 2a∗0a−1 + b−1
)
|0〉

f−1|0〉 7→ (
− (a∗0)

2a−1 + (β− 2)a∗−1 + a
∗
0b−1

)
|0〉

Proof. Note first that Lemma 5.5.2 applies in the C[β]-case as well. Thus we only need to show
that the Fourier coefficients of the operators associated to e(z), h(z), f(z) satisfy the commutation
relations of ŝl2β. Since they do satisfy this commutation relations on the specialization at β = k+2

for any k ∈ C by lemma 7.4.1 they must satisfy them also in End C[β](M⊗ πβ0 ).

7.4.2 C[β] version of Sk
Consider the free C[β] modules

M⊗C π
β
0 Π0 ⊗C π

β
0

they have a natural structure of C[β] vertex algebras induced by the structure of C-vertex al-
gebra on M and Π0 and from the structure of C[β]-vertex algebra on πβ0 . Their specialization to
β = k+ 2 are the vertex algebrasW0,k and W̃0,0,k respectively. In addition we have embeddings

Vβ(sl2) ↪→M⊗C π
β
0 ↪→ Π0 ⊗C π

β
0

Next consider the free C[β]-module Π−β+n,−β+n with a basis of monomial of the form

pn1 . . . pnkqm1 . . . qms |− β+ n,−β+ n〉 ni,mj < 0

The direct sum
Π−β := ⊕n∈ZΠ−β+n,−β+n
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has the structure of a Π0 ⊗C C[β]-module with the same formulas of the non quantum case.
Analogously we may define the πβ0 -module πβ2β
Consider the vertex operator

V−β,2β(z) := ã
−β(z)V2β(z) : Π0 ⊗C π

β
0 → Π−β ⊗C[β] π

β
2β

where

ã−β(z) = T−β,−βexp

(
−
∑
n<0

βpn + βqn
n

z−n
)
exp

(
−
∑
n>0

βpn + βqn
n

z−n
)

V2β(z) = T2βexp

(
−
∑
n<0

bn

n
z−n

)
exp

(
−
∑
n>0

bn

n
z−n

)
We have the following proposition

Proposition 7.4.2. The operator

Sβ :=

∫
V−β,2β(w)dw

intertwines with the action of ŝl2β on both modules.

Proof. By corollary 7.3.1 the specialization of Sβ at β = k + 2 for k 6= −2 intertwines with the
associated action of ŝl2k since it turns out to be exactly the operator Sk. By lemma 7.4.1 then we
see that the same is true for Sβ.

Consider now the C vector subspaces

(Π0 ⊗ πβ0 )res ⊂ Π0 ⊗ π
β
0 (Π−β ⊗ πβ2β)res ⊂ Π−β ⊗ πββ

defined to be the C-span of the monomials

pi1 . . . pisqj1 . . . pjrbk1 . . . bkl |n,n〉⊗ |0〉 pi1 . . . pisqj1 . . . pjrbk1 . . . bkl |−β+m,−β+m〉⊗ |2β〉

respectively. Identify them both with the C-vector space Π0 ⊗ π0. Note in addition that the
tensor product by C[β] on both spaces induce isomorphisms

(Π0 ⊗ πβ0 )res ⊗ C[β] = Π0 ⊗ πβ0 (Π−β ⊗ πβ2β)res ⊗ C[β] = Π−β ⊗ πββ

Under these identifications we may expand an element v ∈ Π0⊗πβ0 (or inΠ−β⊗πβ2β) in powers
of β

v = v0 + βv1 + β
2v2 + . . .

with vi ∈ Π0⊗π0. Note that this sum is finite. Analogously given a C[β] linear homomorphism
f : Π0 ⊗ πβ0 → Π−β ⊗ πβ2β we may express it in powers of β

f = f0 + βf1 + β
2f2 + . . .

with fi ∈ End (Π0 ⊗ π0). Note that this sum is not necessarily finite but it becomes finite once we
apply to it any vector v ∈ Π0 ⊗ π0.
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Lemma 7.4.2. Given any A ∈ (Π0 ⊗ πβ0 )res and any X ∈ Lg ⊂ ĝβ then

X ·β A = X ·kc A+ β(. . . )

where X ·βA denotes the action of X as an element of ĝβ while X ·kc A denotes the action of X as an element
of ĝkc on A ∈ Π0 ⊗ π0 through the identification (Π−β ⊗ πβ2β)res = Π0 ⊗ π0.

Proof. This follows from the fact that the specialization of Π−β ⊗ πβ2β at β = 0 is equal to Π0 ⊗ π0
as a Π0 ⊗ π0 module. And from the remark that Π0 ⊗ π0 = (Π0 ⊗ πβ0 )res → Π0 ⊗ πβ0 /(β) is an
isomorphism of vertex algebras.

Consider now the expansion of Sβ in powers of β.

Sβ =
∑
n≥0

S
n

ββ
n

Proposition 7.4.3. The first non zero factor of Sβ in the above expansion, considered as an element in
End (Π0 ⊗ π0) intertwines with the action of ŝl2kc . We call it S, the screening operator at the critical
level.

Proof. Write
Sβ = βn(S+ β(. . . ))

and let A ∈ Π0 ⊗ π0 any vector. Consider any element X ∈ Lg as in lemma 7.4.2. We have by
proposition 7.4.2

X ·β Sβ(A) = Sβ(X ·β A)

expanding both expressions in powers of β, using lemma 7.4.2. the fact that both homomorphisms
are C[β] linear and finally comparing the lowest degree terms we obtain

X ·kc S(A) = S(X ·kc A)

7.4.3 Computation of S

We will expand separately the operators

ã−β(z) and V2β(z)

in terms of the identifications Πβ = Π0 ⊗ C[β] and πβ0 = π0 ⊗ C[β] as C[β]-modules.
Remark that on Π⊗C[β] the operators pn, qn acts only on the first factor. On the other hand

considering π0 ⊗ C[β] = πβ0 , it is quite clear that the operators bn acts as follow:

bn = bn if n < 0 bn = 2nβ
∂

∂b−n
if n > 0
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We start with V2β(z). Write V2β(z) =
∑
n∈Z V2β[n]z

−n. Define in addition∑
n≤0

V[n]z−n := exp

(
−
∑
n<0

bn

n
z−n

)
By the remark above we obtain the following expansion

exp

(
−
∑
n>0

bn

n
z−n

)
= exp

(
−
∑
n>0

2β
∂

∂b−n
z−n

)
= 1+−2β

(∑
n>0

∂

∂b−n
z−n

)
+ β2(. . . )

So we have

V2β(z) =
∑
n≤0

V [n]z−n − 2β

(∑
n≤0

V [n]z−n
)(∑

m>0

∂

∂b−m
z−m

)

and we find that if we write V2β(z) =
∑
n∈Z V2β[n]z

−n

V2β[n] = V[n] + β(. . . ) if n ≤ 0
V2β[n] = βV [n] + β

2(. . . ) if n < 0

where for n < 0
V [n] := −2

∑
m≤0

V [m]
∂

∂bm−n

On the other hand we have

ã−β(z) =

(
1+ β

∑
n<0

pn + qn
n

z−n + β2(. . . )

)(
1+ β

∑
n>0

pn + qn
n

z−n + β2(. . . )

)
from which, denoting ã−β(z) =

∑
n∈Z ã

−β[n]z−n

ã−β[n] = 1+ β(. . . )if n = 0

ã−β[n] = β

(
pn + qn
n

)
+ β2(. . . )

It immediately follows the following formula for the residue S2β(z)

Sβ = β

(
V [1] +

∑
n>0

1

n
V[−n+ 1](pn + qn)

)
+ β2(. . . )

we proved the following proposition

Proposition 7.4.4. Let V[n] be the operators above, then

S = V[1] +
∑
n>0

1

n
V [−n+ 1](pn + qn)
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In particular it maps π0 → π0 and on this space it holds the following formula

V := S|π0 = V [1] = −2
∑
n≤0

V [n]
∂

∂bn−1

Notice that S kills the vacuum vector |0〉 ∈ Π0 ⊗ π0.

7.5 Screening operators for arbitrary g

We want to extend the previous result to an arbitrary simple Lie algebra g. In order to do so we
will use the functor of semi infinite parabolic induction introduced in Theorem 6.5.1. In order to
do so we consider the parabolic subalgebras

p(i) ⊂ g p(i) := b− ⊕ Cei

in the decomposition p(i) = m⊕ r we may take

m = sl
(i)
2 ⊕ (hi)

⊥

by theorem 5.7.1 there is an homomorphism of vertex algebras

Vκc(g)→Mg,p(i) ⊗ Vκc(sl2)⊗ π0((hi)⊥)

The following proposition follows directly from the constructions

Proposition 7.5.1. Consider the isomorphisms Mg,p(i) ⊗M 'Mg and π0(Chi) ⊗ π0((hi)⊥) ' π0(h)
then the composition

Vκc(g)→Mg,p(i) ⊗ Vκc(sl2)⊗ π0((hi)⊥)→Mg,p(i) ⊗M⊗ π0(hi)⊗ π0((hi)⊥) 'Mg ⊗ π0(h)

is exactly the free field realization of Vκc(g) of Theorem 5.5.1.

To apply the semi-infinite induction functor to this case we need to extend the definition of S
in order to make it an intertwining operator of a ŝl2κc ⊕ (̂hi)⊥ action.

It suffices to consider the operator

S⊗ id :M⊗ π0(hi)⊗ π0((hi)⊥)→ Π0 ⊗ π0(hi)⊗ π0((hi)⊥)

It intertwines with the action of ŝl2κc ⊕ (̂hi)⊥

Definition 7.5.1. For an arbitrary g we define the screening operators Si as the operators obtained
through the functor of semi-infinite parabolic for the subalgebra p(i) ⊂ g. It is clear from the
construction that Si(π0(h)) ⊂ π0(h) we call

Vi := (Si)|π0(h)

Proposition 7.5.2. The image of the embedding

Vκc(g)→Mg ⊗ π0(h)

is contained in the intersection ⋂
i=1,...,l

kerSi
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Proof. The operators Si commute with the action of ĝκc and kill the vacuum vector.

Consider now the isomorphism

π0(h)→ π0(hi)⊗ π0((hi)⊥) bi, 7→ bi,n bj,n 7→ 1

2
ajibi,n + (bj,n −

1

2
ajibi,n)

Proposition 7.5.3. The operator Vi : π0 → π0 is characterized by the following formula:

Vi = −
∑
m≥0

V[m]Dbi,m−1

where Dbi,m−1
is a derivation of π0 such that

Dbi,m · bj,m = ajiδn,m

Proof. Recall that the operator Vi is V ⊗ id and that

V = −2
∑
m≥0

V [m]
∂

∂bi,m−1

Using the isomorphism above between π0(h) ' π0(hi)⊗ π0((hi)⊥) we find

∂

∂bi,n
· bj,m =

∂

∂bi,n
· (bj,m −

1

2
ajibi,m) +

1

2
aji

∂

∂bi,n
· bi,m = 0+

1

2
ajiδn,m

where we used the fact that for x ∈ π0((hi)⊥) the derivative with respect to bi is by definition
0.

Proposition 7.5.4. The center of the vertex algebra ζ(g) is contained in the intersection

ζ(g) ⊂
⋂

i=1,...,l

kerVi

Proof. We know that ζ(g) ⊂ π0 and that Vκc(g) ⊂ ∩kerSi. It immediately follows that

ζ(g) ⊂
⋂

i=1,...,l

ker(Si)|π0 =
⋂

i=1,...,l

kerVi
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Chapter 8

Identification with the algebra of
functions on the space of Opers

This section is devoted to the identification of the center of the vertex algebra ζ(g) ⊂ Vkc(g) with
the algebra of functions on the space of Opers which is a classifying space for certain connections
on the trivial G-bundle on D.

We will start by studying principal bundles and connections on them, we proceed by defining
the space of Opers and Miura Opers and finally link the algebras of functions on these spaces to
the center ζ(g).

8.1 Principal Bundles

We first have to define what a principal bundle is and what is a connection on it. Some of the
definitions we will be giving are geometric but sometimes the Tannakian formalism, and therefore
a more functorial point of view, will come in handy.

From now on X will denote a scheme over a C algebra R, G an algebraic group over C, GR
will denote its extension of scalars to R. All fibered products are to be understood over the most
natural space.

Definition 8.1.1. A principal G-bundle over X is a scheme P with a right action of G: µ : P ×G→ P
and a projection p : P → Xwhich is G invariant. We also require this bundle to be locally trivial:

There exist a covering Ui of X for the Zariski topology for which P|Ui ' Ui × G in a G equiv-
ariant way.

A principal bundle P that is isomorphic to X×G (always in a G equivariant way) will be called
trivial.

To shorten our notation we will call a principal G bundle simply a G bundle. It is easy to check
that given a map of schemes f : Y → X the fibered product f∗P = Y ×X P is naturally a G bundle.

Remark 8.1.1. We state some simple remarks:

• The natural map P×G→ P×X P which sends (p, g)→ (p, pg) is an isomorphism. This may
be checked locally on X, and it is quite easy to see for the trivial bundle;
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• A map of G bundles is a G-equivariant morphism ϕ : P1 → P2 such that p2 ◦ ϕ = p1. Such
a map must be an isomorphism since the fibers are single G-orbits. A map satisfying these
properties will be simply called an isomorphism;

• A principal bundle P over X is trivial if and only if the structural morphism P → X admits a
section. The set of such sections will be denoted by PX(X), it may be checked that it is a G(X)
torsor (i.e. it has a natural G(X) action which is simply transitive);

• The set of automorphisms of the trivial G bundle X × G is isomorphic to the set G(X) =
Hom (X,G). Indeed consider a G equivariant isomorphism that commutes with the projec-
tions Φ : X × G → X × G, observe that since Φ is G equivariant and it commutes with the
projections it must of the form (x, g) 7→ (x,ϕ(x)g) for some ϕ : X→ G.

• Given a G-scheme Y we can consider the product P × Y, it carries a natural right G action,
defined by (p, y) ·g := (pg, g−1y) and since P is locally trivial the quotient P(Y) := (P×Y)/G
exists and it is naturally a Y-bundle over X. By a slight abuse of notation we will denote this
quotient with the same symbol used for the fibered product: P ×G Y. We will also use this
notation when we are in other situations when the subscript is a group we will mean that we
are considering the quotient space by the prescribed group action.

Definition 8.1.2. Given H a subgroup of G, and a principal H bundle P over X the scheme P(G)
admits a natural right G action that makes it into a principal G bundle. Given a G bundle P over X
a H-reduction of P is a principal H bundle PH with an isomorphism PH(G) ' P

Note that the map PH → PH × G → PH(G) ' P which sends p 7→ (p, 1) 7→ [p, 1] is clearly
H equivariant since [ph, 1] = [p, h] = [p, 1]h. We deduce that up to isomorphism to give an H-
reduction is equivalent to give an H-bundle PH and an H-equivariant map PH → P. Such a map is
easily checked to be an embedding. Thanks to this remark we will always speak of anH-reduction
as an H-invariant embedded sub-bundle PH ⊂ P.

We now focus on the trivial case. Consider the trivial G-bundle X×G, an H-trivial reduction is
therefore an H-equivariant embedding Φ : X×H→ X× G. Consider the map ϕ : X → G defined
by composing the embedding p 7→ (p, 1) ∈ X × H with the projection X × G → G. This map
determines the embedding since, by H-invariancy on R-points, Φmust be of the form

(p, h) 7→ (p,ϕ(p)h) for p ∈ X(R), h ∈ H(R) and ϕ(p) ∈ G(R)

Consider now anotherH-equivariant mapΦ ′ : X×H→ X×G that defines the same reduction,
or equivalently such thatΦ andΦ ′ have the same image. Consider the corresponding morphisms
ϕ,ϕ ′ : X → G defined as above. The fact that Φ and Φ ′ have the same image translates to the
following condition on R-points:

{ϕ(p)h : h ∈ H(R)} = {ϕ ′(p)h : h ∈ H(R)} ∀p ∈ X(R)

But this is equivalent to ask that ϕ(p)ϕ ′(p)−1 ∈ H(R)∀p ∈ X(R). Or equivalently that there
exists a map ψ : X→ H such that ϕ = ϕ ′ ·ψ.

We just proved the following:

Proposition 8.1.1. The set of trivial H-reductions of the trivial G-bundle over X, X × G is in natural
correspondence with

G(X)/H(X)
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More generally, given a trivial G-bundle P over X the set of H-reductions of P is in natural correspondence
with:

PX(X)×G(X) G(X)/H(X)

Where PX(X) is the set of sections of the projection map P → X. It is not empty since we are assuming
that P is trivial.

Proof. The first statement follows from the preceding discussion. While the second statement is a
natural generalization taking into account that the set of trivializations of P is equal to PX(X).

8.2 Connections on vector bundles

We now turn our attention to connections. We will define what a connection on a vector bundle is
paying specific attention to the trivial case. In the next section the Tannakian formalism will allow
us to extend this definition to connections on a principal G-bundle.

By a vector bundle over an R-scheme X we mean an R-scheme V with a projection π : V → X
which is locally (in the Zariski topology) isomorphic to X ×R AnR and such that the transition
functions are R linear. The sheaf of sections of V is naturally a locally free sheaf of OX modules of
equal rank n. Every vector bundle is uniquely determined by its sheaf of sections, therefore we
will make no difference between them and call them by the same symbols, each interpretation will
be clear from the context.

Definition 8.2.1. LetX be an R-scheme. An R-connection on a vector bundle V → X, is a morphism
between the OX-modules:

∇ : V → V ⊗OX Ω1X/R
which is R-linear and satisfy the following Leibniz rule

∇(fσ) = σ⊗ df+ f∇(σ)

for any function f ∈ OX and any section σ ∈ V .

Remark 8.2.1. It is easy to check from the definition that the difference between two connections
is a homomorphism ofOX-modules, in addition given an homomorphism ofOX-modules σ : V →
V ⊗Ω1X/R and a connection∇ the morphism∇+ σ : V → V ⊗Ω1X/R is still a connection.

We deduce from this that the space of connections, if not empty, is a torsor overHomOX(V,V⊗
Ω1X/R).

Given a finite dimensional vector space V over C we attach to it a canonical functor R 7→ V(R) =
V⊗CR this is easily seen to be representable by AdimV and therefore is an affine scheme. We denote
by Va this scheme. Va may be also defined over an arbitrary C-algebra R by extension of scalars.
We call this VR,a, its points on a given R-algebra R ′ are just V(R ′) = V ⊗C R

′ = (V ⊗C R)⊗R R ′.
Given a vector space and an R-scheme Xwe can define the trivial vector bundle with fiber V as

X×R Va,R. Its sheaf of sections is canonically isomorphic to V ⊗C OX.
Connections on trivial bundles are particularly easy to describe. Indeed consider the trivial

bundle X×R VR,a for a given finite dimensional vector space. Consider the canonical connection

d : VR ⊗R OX → (VR ⊗R OX)⊗OX Ω1X/R = VR ⊗R Ω1X/R
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Induced by the canonical differential d : OX → Ω1X/R and extended by linearity.
We know by Remark 8.2.1 that any connection is of the form d+A where A ∈ HomOX(VR ⊗R

OX, VR ⊗R Ω1X/R but this last space is isomorphic to End R(VR)⊗R Ω1X/R(X). We proved

Proposition 8.2.1. Every connection on the trivial bundle X×R VR,a is of the form

d+A with A ∈ End R(VR)⊗R Ω1X/R(X)

The category BunX of vector bundles over X is naturally an additive tensor category and con-
nections satisfy some nice properties relatively to the tensor structure. In particular the following
hold:

Proposition 8.2.2. Let (V,∇V), (W,∇W) two vector bundles with connection over an R-scheme X.

• The vector bundle V ⊗W has a natural connection namely ∇V ⊗ 1 + 1 ⊗ ∇W which is defined as
follows:

∇V ⊗ 1 + 1⊗∇W : V ⊗W → V ⊗W ⊗Ω1X/R σ1 ⊗ σ2 7→ ∇V(σ1)⊗ σ2 + σ1 ⊗∇W(σ2)

It is easily checked to be a connection

• The vector bundle V∨ carries a natural connection∇∨
V defined by the following formula:

d〈ϕ,σ〉 = 〈∇∨
V (ϕ), σ〉+ 〈ϕ,∇(σ)〉

for any ϕ ∈ V∨, σ ∈ V

We now study how connections on trivial bundles change under different choices of trivializa-
tion. In particular choose a vector bundle isomorphism g : X×VR,a → X×VR,a, this is equivalent
to give a map g : X→ GLR(VR) or equivalently g ∈ GLR(VR)(X).

Proposition 8.2.3. Consider a connection ∇ = d + A on the trivial vector bundle X ×R VR,a and an
automorphism g ∈ GLR(VR)(X), then under this automorphism the connection is read as

g · ∇ = d+ gAg−1 − dg · g−1

Let’s explain what does this mean. Thanks to proposition 8.2.1 we may think of A as a matrix with coeffi-
cients inΩ1X/R(X) while g may be thought as an invertible matrix with coefficients in OX(X).

Then dg makes sense as a matrix with coefficients in Ω1X/R(X) and it makes sense to multiply (both
from left and right) matrices with 1-forms coefficients by matrices with functions coefficients so gAg−1 and
dg · g−1 both make sense;.

Proof. Fix a basis of V let’s call it e1, . . . , en. The vectors ei also define sections of the associated
vector bundle ei = ei ⊗ 1. The matrix A is easily computed evaluating ∇ on these sections: if
∇(ei) =

∑
j ejωji for some 1-formsωij ∈ Ω1X/R(X) then we have Aij = ωij indeed

∇(
∑
i

fiei) =
∑
i

eidfi +
∑
i

fi∇(ei) =
∑
i

eidfi +
∑
ij

ejωjifi = d(
∑
i

fiei) +A · (
∑
i

eifi)

To compute the matrix associated to the basis si = gei we must evaluate ∇ on these sections and
express it in the same basis.

The rest of the proof is a straightforward computation.

142



8.3 Tannakian Formalism

We now give another description of principal G bundles over a scheme X. Loosely speaking we
will state a version of the Tannakian formalism which describes P in term of certain tensor functors.

Given a principal G-bundle P and V ∈ RepC(G) a G representation we may construct as above
a bundle P(V), this turns out to be a vector bundle over X and given two representations V andW
there are natural isomorphism P(V ⊕W) ' P(V)⊕ P(W), P(V ⊗W) = P(V)⊗ P(W).

Call P : RepC(G)→ BunX the functor from the category RepC(G) ofG representations of finite
dimension to the category BunX of vector bundles over X that sends V 7→ P(V).

For the definition of rigid tensor category and the classical Tannakian formalism refer to [DM82].
We couldn’t find a precise reference which shows the following theorem, but we cite [FBZ04][Section
1.2.4] where it is stated as a fact.

Proposition 8.3.1. The functor P is an additive exact tensor functor between rigid tensor categories.

Theorem 8.3.1. The association P 7→ P is fully faithful.

We will therefore denote by the letter P the functor associated with the G-bundle P, and thanks
to the above theorem we will make no difference between the principal bundle P and its associated
functor. Thanks to this formalism we are able to transpose the definition of a connection from the
"linear" setting of vector bundles to the "group" setting.

Definition 8.3.1. A connection on a principal bundle P : RepC(G) → BunX is a family of connec-
tions ∇V parametrized by the representations of G on the vector bundle P(V) such that ∇V⊕W =
∇V ⊕ ∇W and ∇V⊗W = ∇V ⊗ 1 + 1 ⊗ ∇W in the sense of proposition 8.2.2 using the provided
identification P(V ⊗W) = P(V)⊗ P(W)

We focus one again on the trivial setting. Let Pcan : RepC(G) → BunX the canonical trivial
principal bundle V 7→ X ×C Va. Then giving a connection on Pcan is equivalent, by proposition
8.2.1 a family of elements ∇V ∈ End C(V) ⊗Ω1X/C(X) satisfying the property ∇V⊗W = ∇V ⊗ 1 +

1 ⊗∇W given a linear functional ξ ∈ Hom C[X](Ω
1
X/C,C[X]) this condition express as follows. We

call∇V,ξ the endomorphism of V obtained by contraction with ξ. Then we have

∇V⊗W,ξ = ∇V,ξ ⊗ 1 + 1⊗∇W,ξ

Where by ∇V,ξ ⊗ 1 we mean the endomorphism of V ⊗W defined by tensoring ∇V,ξ with the
identity. Using the Tannakian formalism for Lie algebras (see [DM82]), we obtain that the datum
V 7→ ∇V,ξ defines a unique element ∇ξ ∈ g⊗ C[X], this association is clearly C[X]-linear in ξ. If in
addition the pairing

Ω1X/C ×Hom C[X](Ω
1
X/C,C[X])→ C[X]

is perfect we may glue all these elements to a unique operator ∇ ∈ g⊗C Ω
1
X/C(X). We just proved

the following proposition.

Proposition 8.3.2. If (Ω1X/C)
∨∨ = Ω1X/C then to give a connection on the principal trivial bundle Pcan

is equivalent to give an element of
∇ ∈ g⊗C Ω

1
X/C(X)

Along with this information we may restate proposition 8.2.3 in the group setting, analysing
how changing the trivialization for our principal bundle changes the connection;
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Proposition 8.3.3. Suppose X satisfies the condition of the above proposition and let P = X×G the trivial
G-bundle. And let g ∈ G(X) be an automorphism of P. Consider a given connection on P:

∇ = d+A with A ∈ g⊗Ω

Then under the trivialization induced by g the connection takes the form

g · ∇ = d+Adg(A) − dg · g−1

We will call this action the gauge action of G(X) on the space of connections.

8.4 The case of the formal disc

We now define what a connection on a vector bundle is in the case of the formal disc. The only
subtle definition is that is more convenient to impose that the space of 1-form must beΩ1,contDR/R

.

Definition 8.4.1. Let X = DR (we do not choose a coordinate here) and let V be a vector bundle on
X. An R-connection on V is a morphism of OX modules:

∇ : V → V ⊗Ω1,contDR/R

which is R-linear and satisfy the following Leibniz rule:

∇(fσ) = σ⊗ df+ f∇(σ)

for any function f ∈ OX and any section σ ∈ V .

The other definitions are identical to the one we defined above. So we have principalG-bundles
onDR, and connections on them defined as family of connections on the associated vector bundles.

We consider R-groups which are actually defined over C, since the spaceΩ1,contDR/R
is free of rank

1 its bidual is canonically isomorphic to it hence as in proposition 8.3.2 the space of connections
on the trivial principal G-bundle is in correspondence with the elements in

g⊗Ω1,contDR/R
= g⊗ R[[t]]dt

8.4.1 Action of coordinate changes

We just saw that we may express a connection on a trivial G-principal bundle may expressed as
an element of g ⊗ R[[t]]dt.This expression is dependent on the choice of the coordinate t, we now
wonder how the same connection is expressed in terms of another coordinate s such that t = ρ(s).

We first consider the easier case of a trivial vector bundle. Let V = OnD. The matrix element
defining the connection is expressed with coefficients in Ω1,contR[[t]]/R and it corresponds to the evalu-
ation of the connection on the constant sections ei. The latter sections of our vector bundle do not
change under change of coordinates since they are constant. We only have to express one forms in
the new coordinate.
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Remark 8.4.1. Let ω = f(t)dt ∈ Ω1,contR[[t]]/R then under a change of coordinate t = ρ(s) (or equiva-
lently under the automorphism induced by ρ)ω is read as

ω = f(ρ(s))ρ ′(s)ds

Note that ρ ′(s) is automatically invertible (as an element of R[[s]]) since its leading coefficient is
invertible in R.

This discussion extends naturally to the context of G-trivial principal bundles. Applying the
automorphism ρ(t) rewrites for each vector bundle with a connection d+A(t)dt a new connection
d+A(ρ(s))ρ ′(s)ds and this formula defines an action on the space of G-connections.

Proposition 8.4.1. Let P = DR ×G the trivial vector bundle overDR. Then we have a natural AutO(R)
action on the space of connections on P which is described by the following formula:

ρ(t) ·
(
d+A(t)dt

)
= d+A(ρ(t))ρ ′(t)dt

8.5 Opers

We restrict ourselves to the case of the formal disc. From now on G will be a reductive group
defined over C of adjoint type, its Lie algebra will be denoted by g. We have a closed immersion
G → GL(g). We fix a torus and a Borel subgroup of G, H ⊂ B ⊂ G which gives us a Cartan
subalgebra and a Borel subalgebra of g, h ⊂ b ⊂ g. This gives us a basis (αi) for the root system
and We also fix generators fi ∈ g−αi and call p−1 =

∑
i fi.

In what follows we are going to define the functor OpG(D) as a functor of C-algebras classify-
ing certain connections.

We start with a definition concerning reductions of bundles.

Definition 8.5.1. LetH be a subgroup ofG and let∇ be a connection on the trivial principal bundle
X×G. Let ϕ : X→ G a morphism defining an H-reduction of X×G. We say that∇ preserves this
reduction if

ϕ−1 · ∇ ∈ d+ uwith u ∈ h⊗Ω1X/R
This is to say that we require that when we bring the couple (X×G,ϕ) to the trivial reduction (X×
G, 1) the connection must be with coefficients in the Lie algebra of H. This is an intrinsic property
(i.e. it does not depend on the choice ofϕ) since we can only change varphi by right multiplication
with an element of H(X) and the gauge action of the latter group preserves connections of the
above form.

Definition 8.5.2. An R-Oper over D is a triple (P,∇, PB) where P and PB are principal trivial G
and B bundles onDR respectively, PB ⊂ P is a B reduction of P and∇ is an R-connection such that
given any trivialization of P ' DR ×C G such that PB = DR ×C B ⊂ DR ×C G the connection takes
the form

∇ = d+ (
∑
i

fi ⊗ψi + v(t))dt with ψi ∈ (R[[t]])∗ and v(t) ∈ b⊗ R[[t]]

An isomorphism of Opers over DR, (P,∇, PB) and (P ′,∇ ′, P ′B) is an isomorphism P ' P ′ which
preserves the additional structures (i.e. sends∇ to ∇ ′ and PB to P ′B).
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We remark here that the definition is consistent, suppose we have an isomorphism DR × G →
DR × G which preserves DR × B. Such an isomorphism is given by a map ϕ : DR → G or
equivalently an element of G(R[[t]]). Since we are asking that DR × PB is sent to DR × PB the
identity in B(R[[t]]) must be sent to an element of B(R[[t]]) but this is the image of ϕ so actually we
have ϕ ∈ B(R[[t]]) and it is easy to check that the gauge action of B(R[[t]]) on the above form is still
a connection of the same form.

We are ready to define the space of Opers on the formal disc relative to a group G.

Definition 8.5.3. We define OpG(D) as the functor of C-algebras:

OpG(D)(R) := {R− Opers on D}/isom

to a morphism of C-algebras f : R → R ′ we associate the map between the corresponding Opers
sending a triple (P,∇, PB) defined over R to the triple (PR ′ ,∇R ′ , (PB)R ′) where the bundles are
obtained through the base changeDR ′ → DR and the connection is the pullback connection which
may be defined as

∇ = d+ v(t) ∈ d+ g(R[[t]]) 7→ f∗∇ = d+ f∗v(t) ∈ d+ g(R ′[[]t]])

Theorem 8.5.1. The functor OpG(D) is representable by an affine scheme over C.

In order to prove the above theorem we will need a couple of lemmas. We state first an easy
remark that follows from the discussion after definition 8.5.2.

Remark 8.5.1. The functor OpG(D) is naturally isomorphic to the functor

R 7→ {
∑
i

fi ⊗ψi + v(t) : ψi ∈ R[[t]]∗ and v(t) ∈ b[[t]]}/B(R[[t]])

Where B(R[[t]]) acts on the above space through the gauge transformations defined in Proposition
8.3.3. Indeed we have a functorial map from the functor above, associating to an isomorphism
class of

∑
i fi⊗ψi+v(t) the Oper (DR×G,d+

∑
i fi⊗ψi+v(t), DR×B) and the discussion above

shows that this map induces a bijection on the isomorphism classes.

Now recall the isomorphism B = H × N, so that to an element x ∈ B(R[[t]]) we can associate
a couple (t, n) ∈ H(R[[t]]) ×C N(R[[t]]). We first focus on the torus H, since G is of adjoint type
the pairing between the coroot lattice X∨ and the root lattice X is perfect. Recall that the functors
R 7→ H(R) and R 7→ X∨ ⊗Z R

∗ are naturally isomorphic and callω∨
i the elements in X∨ defined by

ω∨
i (αj) = δij.

It is easy to see that the action of N(R[[t]]) does not change the addendum
∑
i fi ⊗ ψi since its

action only increases the weight. So only H(R[[t]]) acts on that addendum and there is a unique
element, namely

∑
iω

∨
i ⊗ ψ

−1
i , such that the gauge action of H(R[[t]]) puts the connection in the

form

p−1 ⊗ 1+ v(t) with v(t) ∈ b⊗ R[[t]]

Lemma 8.5.1. The action of N(R[[t]]) on the space of connections of the form

d+ (p−1 ⊗ 1+ v(t))dt with v(t) ∈ b⊗ R[[t]]
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is free. In particular given such a connection there exists unique elementsU ∈ n(R[[t]]) and ṽ(t) ∈ V⊗R[[t]]
such that

d+ (p−1 ⊗ 1+ v(t))dt = exp(U) · (d+ (p−1 ⊗ 1+ ṽ(t))dt)

where V is the space defined in the preliminary section concerning exponents of a Lie algebra.

Proof. See [Fre07][Lemma 4.2.2]

Corollary 8.5.1. The functor of Opers OpG(D) is naturally isomorphic to the functor

R 7→ {d+ (p−1 ⊗ 1+ v(t))dt : v(t) ∈ V ⊗ R[[t]]
}

and therefore is representable. We will denote this expression for an Oper connection on DR × G the
‘canonical’ form.

Proof. The natural map

d+ (p−1 ⊗ 1+ v(t))dt 7→ (DR ×G,d+ (p−1 ⊗ 1+ v(t))dt,DR × B)

is an isomorphism by the above discussion.

We will now investigate the action of the groupAutO on the functor of Opers. To represent the
space of Opers we chose a particular expression for the connection which is dependent of a choice
of a uniformizing parameter for the discD, in other words a coordinate. Changing coordinate will
not change the intrinsic connection itself but it will affect, as we are going to see now, our preferred
description of it.

Consider an Oper connection d+(p−1+v(t))dt applying the action discussed in 8.4.1 we obtain
that

ρ(t) ·
(
d+ (p−1 + v(t))dt

)
= d+ (p−1ρ

′(t) + v(ρ(t))ρ ′(t))dt

This is of course still an Oper connection (we only applied a change of coordinate) but it is not
expressed anymore in our preferred system of coordinates. Applying the Gauge action ofH(R[[t]]),
in particular of

∑
iω

∨
i ρ
′(t) = p∨ρ ′(t) we obtain

d+ p−1 +Adp∨ρ ′(t)(v(ρ(t))ρ
′(t)) − p∨

ρ ′′(t)

ρ ′(t)

And finally to bring it in the canonical form we can apply the gauge action of N(R[[t]]). The
formulas for this action are rather complicated and may be found in [Fre07].

8.6 Miura Opers

We defined what an Oper is and now our goal is to describe the center of the vertex algebra
ζ(Vk(g)) ⊂ Vkc(g) as the algebra of functions on the space of Opers. In order to do so we are now
introducing an auxiliary space, the space MOpG(D) of Miura Opers on the formal disc (we are
really interested in the subspaceMOpG(D)gen of generic Miura Opers).

Recall that we embedded the center ζ(Vk(g)) in a bigger commutative algebra π0.We will give
a geometric interpretation of π0 as the algebra of functions on the space of generic Miura Opers
on the disc. The space of generic Miura Opers on the disc turns out to be aN-torsor over the space
of ordinary Opers, using this information we will be able to embed the algebra of functions on the
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space of Opers as the intersection of the kernels of certain operators on the algebra of functions on
the space of generic Miura Opers. This description allows us to compute the character of the ring
of functions C[OpLG(D)] and having embedded both ζ(Vk(g)) and C[OpLG(D)] in the same space
we will be able to show that they are indeed equal.

Definition 8.6.1. An R-Miura Oper on the formal disc for the groupG is a quadruple (P,∇, PB, PB−
)

where the triple (P,∇, PB) is an R-Oper (recall that the principal bundles are defined overDR) and
PB−

is another B−-reduction for the lower Borel subgroup, which we require to be trivial and
preserved by ∇.

An isomorphism of R-Miura Opers is an isomorphism between the principal G-bundles which
preserves the rest of the structure.

We define now the space of Miura Opers as a functor like we did with the space of Opers. There
will be a slight difference though: we will see below that the functor we define is not representable,
but its sheafification in the fpqc topology is.

Definition 8.6.2. The spaceMOpG(D) of Miura Opers on the formal disc for the groupG is defined
as the functor of R-algebras:

MOpG(D)(R) = {R− Miura Opers}/isom

So a Miura Oper is just an Oper with some additional data. We are going to analyze how a
Miura Oper relates with the underlying Oper (i.e. the first three terms of the quadruple).

We first state a useful technical lemma.

Lemma 8.6.1. Consider a group G and a connection on the trivial principal bundle DR × X which we
express as∇ = d+A(t)dt with A(t) ∈ g⊗ R[[t]]. Fix an element g ∈ G(R).

Then there exists a unique element g(t) ∈ G(R[[t]]) such that g(0) = g and

g(t) · ∇ = d

Proof. We must solve
Adg(t)(A(t)) − g

′(t)g−1(t) = 0

where by g ′(t) we mean the derivative of g(t) along t. Embedding G in the general linear
groupG→ GLn we may consider elements ofG and of its Lie Algebra g as matrices. The equation
above reads as

g ′(t) = g(t)A(t)

and being a linear differential equation it admits a unique solution with g(0) = g. This solution
actually belongs to G(R[[t]]). This may be checked easily in matrix terms, indeed the conditions
g ′(t)g−1(t) ∈ Lie(G)(R[[t]]) and g(0) ∈ G(R) imply that g(t) ∈ G(R[[t]]).

We now are ready to analyze the structure of reductions preserved by a connections.

Proposition 8.6.1. Let B be any subgroup ofG and let PB a trivial principal B- bundle overDR, embedded
inDR×G and preserved by a connection∇ on the latter G-bundle. Then PB,0, determines PB: in addition,
given any B-reduction of SpecR×G there exists a unique B reduction preserved by∇ ofDR×G such that
its restriction to the 0 point is the given reduction of SpecR×G.
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Proof. Thanks to the last lemma we may, up to isomorphism of X×G, assume that the connection
is the trivial connection. We prove the following equivalent statement: B-reductions preserved
by the trivial connection on the trivial G-bundle DR ×G are in correspondence with B reductions
of the pullback SpecR × G at the 0 point SpecR → DR. Consider a morphism ϕ : DR → G
which determines the B-reduction PB. Recall that ϕ is determined up to an element of B(R[[t]])
and that multiplying ϕ for such an element does not change the reduction. By hypothesis (PB
being preserved by the connection) ϕ ′ϕ−1 belongs to the Lie algebra b ⊗ R[[t]], this shows by
exponentiation as in the previous lemma that ϕ is determined by ϕ(0) and that ϕ ∈ ϕ(0)B(R[[t]]).
Given two different maps ϕ and ϕ ′ that define the same reduction on the 0 point (i.e. ϕ(0)B(R) =
ϕ ′(0)B(R) we of course have ϕB(R[[t]]) = ϕ(0)B(R[[t]]) = ϕ ′(0)B(R[[t]]) = ϕ ′B(R[[t]]) so they
define the same reduction on DR.

Vice versa given a fixed B-reduction of SpecR × G determined by ψ ∈ G(R)/B(R) we can
consider the constant reduction defined by ψ ∈ G(R) ⊂ G(R[[t]]) the choice of the representative
does not change the reduction by the above discussion.

Thanks to the above proposition we gain the information that in the definition of a Miura
Oper, given the underlying Oper (P,∇, PB) the set of B−-reductions preserved by∇ are in natural
correspondence with the set of B− reductions of P0. We are now going to make this remark more
precise.

By theorem 8.5.1 the functor of Opers is representable by an affine C-scheme OpG(D), let
C[OpG(D)] be its ring of functions andDOpG(D) the C[OpG(D)] formal disc. By the Yoneda lemma
there exists a universal triple (up to isomorphism) (Puniv,∇univ, PunivB ) which is a C[OpG(D)]-
Oper, so Puniv is a principal trivial G-bundle onDOpG(D), PunivB is a B-reduction which is a trivial
B-bundle and ∇univ is a connection on Puniv which satisfies the Oper condition.

The universal property of the universal triple is the following:
Given an isomorphism class of R-Opers (P,∇, PB) consider the associated R point SpecR →

OpG(D) then isomorphism class of the pullback through the induced map DR → DOpG(D) of the
universal triple is exactly coincides with (P,∇, PB).

In particular let Puniv0 the restriction of Puniv to the 0 point OpG(D) → DOpG(D). This is a
principal trivial G-bundle over the space of Opers. It satisfies the property that given an R-Oper
(P,∇, PB) the pullback of Puniv0 is exactly P0. In other words the fiber of the map

Puniv0 (R)→ OpG(D)(R)

at the Oper (P,∇, PB) is in natural correspondence with P0(R).

Proposition 8.6.2. The functor

R 7→ Puniv0 (R)×G(R) G(R)/B−(R)

is naturally isomorphic toMOpG(D).

Proof. Indeed consider both functors as fibering over the functor of Opers. Combining proposition
8.6.1 and proposition 8.1.1 we see that the fiber of MOpG(D)(R) at a given R-Oper (P,∇, PB) is
canonically identified with

P0(R)×G(R) G(R)/B−(R)

But this is exactly the fiber of Puniv0 (R)×G(R) G(R)/B−(R) at the same Oper.
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Corollary 8.6.1. The sheaf associated toMOpG(D) is representable by

Puniv0 ×G G/B

Proof. Indeed R 7→ P0(R)×G(R) G(R)/B−(R) is a fat subfunctor of Puniv0 ×G G/B.

This gives us a nice description of the space of Miura Opers. We now turn our attention to-
wards generic Miura Opers.

Definition 8.6.3. Two reductions PB and PB−
which are trivial bundles of a trivial G-bundle P

are said to be in generic relative position if given any trivialization such that PB is identified with
X×B ⊂ X×G the morphismϕ− defining the reduction has image contained in the open BB− ⊂ G.

Recall first that the open set BB− is isomorphic toN×B− through the multiplication morphism,
this implies for instance that for every C-algebra R we have BB−(R) = B(R)B−(R). This definition
is independent of the choice of the trivialization and on the choice ofϕ−. Indeed fix a trivialization,
then the set of morphism that gives the same B− reduction is ϕ−B(R[[t]]) so the condition ϕ− ∈
BB−(R) depends only on the B−-reduction and not on ϕ−.

On the other hand changing the trivialization of X×G and asking that under this trivialization
PB is still identified with X×B ⊂ X×G amounts to changeϕ− by left multiplication by an element
of B(R[[t]]) so also the definition does not depend on the choice of the trivialization.

Remark 8.6.1. Given two reductions in generic relative position of a trivial G-bundle P we have
that PB ∩ PB−

is an H trivial reduction of P. through the embedding of X × H in X × G given by
n ∈ N(X) where n is the projection of ϕ− ∈ BB−(X) = N(X)×B−(X) under the second projection.

Proposition 8.6.3. Let (P, PB) a couple of trivial G and B bundles over X respectively, with PB a B re-
duction of G. Then the set of B− reductions of P which are in generic relative position to PB is canonically
isomorphic to

(PB)X(X)×B(X) BB−(X)/B−(X)

Where (PB)X(X) is the set of sections of the projection map PB → X.

Proof. We have a canonical isomorphism PX(X) = (PB)X(X)×B(X) G(X), induced by the inclusion
PB ⊂ P. The set of B− reductions is canonically isomorphic to PX(X)/B−(X) and hence to

(PB)X(X)×B(X) G(X)/B(X)

It is easy to see (choosing a trivialization of PB for instance) to show that the subset of reductions
in generic relative position with PB is exactly the subset

(PB)X(X)×B(X) BB−(X)/B(X)

Proof. Let’s show this at the level of functors. Fix a trivialization of P such that PB is sent to
X×B ⊂ X×G. Fix a point p ∈ X(R) and consider the R-fibers of PB and PB−

over that point. They
are respectively

PB,p = {(p, x) : x ∈ B(R)} PB−,p = {(p,ϕ−(p)y) : y ∈ B−(R)}

Their intersection is given by the points (p, x) such that x ∈ B(R) ∩ ϕ−(p)B−(R), now pick the
unique elements n ∈ N(R) and b− ∈ B−(R) such that ϕ(p) = nb−. It is easy to see that the
intersection above is just nH(R).
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Definition 8.6.4. A Miura Oper (P,∇, PB, PB−
) is called generic if the reductions PB and PB−

are
in generic relative position.

Let’s make some remarks about the structure of isomorphism classes of generic Miura Opers.
Choose a trivialization of (P, PB) such that they are identified with the trivial bundlesDR×B ⊂

DR × G. The connection ∇ is by the Oper condition in the space d + (
∑
i fiψi + b ⊗ R[[t]])dt. On

the other hand since the B− reduction is in generic position with DR × B it is defined by a map
ϕ : DR → BB−, since changing by right multiplication with elements in B−(R[[t]]) we may assume
as well that ϕ ∈ N(R[[t]]). Thus we may find a trivialization (namely the one given by ϕ−1) that
preserves the B reduction and for which we may trivialize also the B− reduction.

We just proved that any generic Miura Oper the triple (P.PB, PB−
) is isomorphic to the trivial

triple (DR ×G,DR × B,DR × B−). Under this trivialization the connection must be of the form

∇ = d+ (
∑
i

fiψi + u(t))dt with u(t) ∈ h⊗ R[[t]]

Now suppose that we have an automorphism of the triple (DR × G,DR × B,DR × B−). Such
an isomorphism is defined by a function ϕ ∈ G(R[[t]]) and the condition that both reduction are
preserved means that ϕ ∈ B(R[[t]]) ∩ B−(R[[t]]) = H(R[[t]]). So the only group acting is H(R[[t]]).
As in the case of Opers, then the connection is uniquely expressible as

∇ = d+ (
∑
i

fi + u(t))dt = d+ (p−1 + u(t))dt with u(t) ∈ h⊗ R[[t]] (8.1)

This discussion proves the following proposition.

Proposition 8.6.4. The functor of generic Miura OpersMOpG(D)gen is isomorphic to the functor

Conn(Hp
∨

)(R) :=
{
d+ (p−1 + u(t))dt with u(t) ∈ h⊗ R[[t]]

}
It is therefore representable.

Proof. The natural map that on R-points sends an element d+ (p−1 +u(t))dt to the generic Miura
Oper (DR×G,d+(p−1+u(t))dt,DR×B,DR×B−) is an isomorphism by the above discussion.

Using the above isomorphism we can describe a preferred system of coordinates forMOpG(D)gen.

Proposition 8.6.5. Let bi,n the function onMOpG(D)gen defined at the level of functors

bi,n(R) :MOpG(D)gen(R)→ A1(R) d+ (p−1 + u(t))dt 7→ αi(u(t))n

Where by αi we mean the R[[t]] linear extension of αi : h → C while for an element r(t) ∈ R[[t]],
r(t)n ∈ R is the n-th coefficient, satisfying r(t) =

∑
n<0 r(t)nt

−n−1.Then the algebra of regular functions
onMOpG(D)gen is isomorphic to the free polynomial algebra generated by the bi,n.

C[MOpG(D)gen] = C[bi,n]i=1,...,l,n<0

Proof. Since every u(t) ∈ h⊗ R[[t]] admits a unique expression

u(t) =
∑

i=1,...,l

ui(t)ω
∨
i

and since αi(u(t)) = ui(t) it is easy to see that MOpG(D)gen is isomorphic to an infinite product
of copies of A1 and that the bi,n introduced above are exactly the coordinates for this space.
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8.7 AutO and DerO action onMOpG(D)gen

As in the case of the space of Opers, a choice of preferred representatives induces an action of
the group AutO on the space of Miura Opers, more precisely on the functor Conn(Hp

∨

) we
easily describe it as follows. Consider an element ρ ∈ AutO(R) and a generic R-Miura Oper
d+ (p−1 + u(t))dt. As we saw before we have that ρ acts on such a connection by

ρ(t) ·
(
d+ (p−1 + u(t))dt

)
= d+ (p−1ρ

′(t) + u(ρ(t)ρ ′(t))dt

To compute the action on our preferred system of coordinates we have to bring this connection
in the form 8.1 and this is easily achieved by applying the gauge action of H(R[[t]]). In particular
if we consider the gauge action of p∨ρ ′(t) we get

p∨ρ ′(t) ·
(
d+ (p−1ρ

′(t) + u(ρ(t)ρ ′(t))dt
)
= d+

(
p−1 +Adp∨ρ ′(t)

(
u(ρ(t))ρ ′(t)

)
− p∨

ρ ′′(t)

ρ ′(t)

)
dt

And since H is commutative Adp∨ρ ′(t) acts trivially on h ⊗ R[[t]]. We obtain therefore the
following proposition.

Proposition 8.7.1. The action of AutO on MOpG(D)gen or equivalently on Conn(Hp
∨

) is given by
the following formula:

ρ(t) ·
(
d+ (p−1 + u(t))dt

)
= d+

(
p−1 + u(ρ(t))ρ ′(t) − p∨

ρ ′′(t)

ρ ′(t)

)
dt

8.7.1 Action of DerO(C) on the ring of functions

Now that we described the action of AutO on MOpG(D)gen we can also describe the action of
DerO(C) on the ring of functions C[MOpG(D)gen]. We are particularly interested in the action of
the operators Ln = −tn+1∂t = t+ εt

n+1, n ≥ −1which are topological generators of DerO(C).

Proposition 8.7.2. The operators Ln = −tn+1∂t act as on C[MOpG(D)gen] as derivations. On the
generators bi,m they act according to the following formulas:

Ln · bi,m = −mbi,n+m if − 1 ≤ n < −m

Ln · bi,−n = −n(n+ 1) if n > 0
Ln · bi,m = 0 if n > −m

In particular L0 acts on C[MOpG(D)gen] semisimply with integer eigenvalues and its character under
this action is given by

ch(C[MOpG(D)gen]) =
∏

i=1,...,l

∏
n<0

1

1− qn
(8.2)

Proof. To compute the action of Ln we have to apply the action of t− εtn+1 ∈ AutO(C[ε]) on the
function bi,m (this amounts to precomposing bi,m with (t− εtn+1)−1 = t+ εtn+1) and then take
the derivative with respect to ε. Thus we consider

bi,m : Conn(Hp
∨

)(R)→ R d+ (p−1 + u(t))dt = d+ (p−1 +
∑
i

ω∨
i

∑
n<0

ui,nt
−n−1)dt 7→ ui,m
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And we precompose with the action of (t− εtn+1)−1

(t+ εtn+1) ·
(
d+

(
p−1 + u(t))dt

)
=

= d+

(
p−1 + u(t+ εtn+1)(1+ (n+ 1)εtn) − p∨

(n+ 1)nεtn−1

1+ (n+ 1)εtn

)
dt

= d+ (p−1 + u(t))dt+ ε
(
tn+1u ′(t) + (n+ 1)u(t)tn − p∨(n+ 1)ntn−1

)
dt

Now we write u(t) =
∑
iω

∨
i

∑
n<0 ui,nt

−n−1 so that

tn+1u ′(t) + (n+ 1)u(t)tn − p∨(n+ 1)ntn−1 =∑
i

ω∨
i

∑
m<0

(
(−m− n− 1)ui,m+n + (n+ 1)ui,m+n − δm,−nn(n+ 1)

)
t−m−1 =∑

i

ω∨
i

∑
m<0

(
(−m)ui,m+n − δm,−nn(n+ 1)

)
t−m−1

Where form ≥ 0we set ui,m = 0.
We therefore have

bi,m

(
(t+ εtn+1) ·

(
d+

(
p−1 + u(t))dt

))
= ui,m + ε

(
−mui,m+n − δm,−nn(n+ 1)

)
Taking the derivative gives now the desired formulas.

Theorem 8.7.1. The isomorphism of commutative algebras

π0(
Lg)→ C[MOpG(D)gen] bi,n 7→ −bi,n

is DerO equivariant.

Proof. This is obvious thanks to formulas of proposition 5.6.4 after noticing that the description of
MOpG(D)gen we gave do not change if we replace Gwith LG.

8.8 Another description ofMOpG(D)gen

We consider now a different, more geometric, description of generic Miura Opers. This description
will allow us to show that they form a N-torsor over the space of Opers.

Consider the fiber of the forgetful morphism MOpG(D)gen(R) → OpG(D)(R) over a given R-
Oper (P,∇, PB). Now the choice of a B− reduction preserved by ∇ is equivalent, by proposition
8.6.1, to the choice of a B− reduction of P0. The additional condition to be in generic relative
position to PB ma be easily expressed in terms of the relative position of PB,0 and PB−,0.

Remark 8.8.1. Consider two reductions of the trivial bundle DR ×G for the subgroups B and B−.
Then they are in generic relative position if and only if their restrictions to the 0 point are in generic
relative position. Indeed we may suppose that PB = DR × B ⊂ DR × G, then the reduction PB−

is in generic relative position with DR × B if and only if any defining map ϕ : DR → G (for PB−
)

takes image in the open BB− ⊂ G. As we saw in the preliminaries this is equivalent to ask that
ϕ(0) takes image in BB−, but again, this is equivalent to ask that PB,0 and PB−,0 are in generic
relative position.
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Now combining the previous remark with proposition 8.6.3 we obtain that the B− reductions
of a given R-Oper (P,∇, PB) are in natural bijection with the set

(PB,0)SpecR(R)×B(R) BB−(R)/B−(R)

Call U the openB-orbitU := BB−/B− ⊂ G/B−. It is an affine scheme isomorphic toN. Combin-
ing the above remarks and a proof analogous to the one of corollary 8.6.1 we obtain the following
proposition.

Proposition 8.8.1. The space of generic Miura Opers is isomorphic to:

MOpG(D)gen = PunivB,0 ×B U

In particular choosing a trivialization of PunivB which induces a trivialization of PunivB,0 we obtain
that

MOpG(D)gen ' OpG(D)×U ' OpG(D)×N

Let’s describe more precisely this isomorphism at the level of functors.

Proposition 8.8.2. The functor of C algebras

R 7→ {(DR×G,d+(p−1+v(t))dt,DR×B, PB−
) : v(t) ∈ V⊗R[[t]] and the quadruple is a generic Miura Oper

}
Is isomorphic to the space of generic Miura Opers and to OpG(D)×N.

Proof. Since the principal bundles DR × G and DR × B are already trivialized and PB−
is a trivial

principal B− bundle in generic position with DR × B. The set of such reductions is in correspon-
dence with morphisms ϕ ∈ BB−(R[[t]])/B(R[[t]]) = N(R[[t]]). The condition of being a Miura Oper
in this case is equivalent to ask that PB−

is preserved by the connection. By proposition 8.6.1 the
set of morphisms ϕ ∈ N(R[[t]]) that preserve the connection is in correspondence with N(R). This
shows that the functor defined above is isomorphic to OpG(D) ×N. On the other hand we have
a natural map from our functor to the functor of generic Miura Opers. Trivializing PB−

under
the isomorphism induced by its defining morphism ϕ ∈ N(R[[t]]) brings the quadruple into the
form of proposition 8.6.4 since the gauge action of N(R[[t]]) do not change the factor p−1. And
therefore the quadruples (DR × G,d + (p−1 + v(t))dt,DR × B, PB−

) are in correspondence with
isomorphism classes of generic Miura Opers. This shows that the functor above is isomorphic also
toMOpG(D)gen.

After choosing such a trivialization we therefore obtain a leftN-action onMOpG(D)gen. Since
the latter space is a product we obtain that OpG(D) 'MOpG(D)gen/N.

The goal of the following section is to describe this action.

8.9 Action of N on the space of generic Miura Opers

We now investigate an action of the groupN on the space of generic Miura Opers. The description
given in proposition 8.8.1 will allow us the describe OpG(D) with the quotient of MOpG(D)gen
by the action of N cited above. Finally we are going to be able to identify the algebra of functions
on OpG(D) as the subspace of n-invariants of the algebra of functions onMOpG(D)gen.
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Consider a trivialized generic R-Miura Oper (DR × G,d + (p−1 + u(t))dt,DR × B,DR × B−).
Let’s describe the left action ofN under the isomorphism of proposition 8.8.2. Intrinsically, sinceN
is acting on the left and the factor ’N’ inMOpG(D)×N stands for the map defining the second re-
duction PB−,0 this action amounts exactly to translating withN the trivialization of PB−,0. Indeed
we can change the B− reduction SpecR × B− by multiplying on the left by an element x ∈ N(R).
The B− reduction we obtain in this way is still in generic relative position with SpecR × B and
therefore by what we have done so far it corresponds to a unique B− reduction PB−,x of DR × G
that is still in generic relative position withDR×B. All B− reductions preserved by the connection
and in generic relative position with DR × B are obtained in this way. This generates the N(R)
action over the space of R-Miura Opers we wanted to describe.

We are now going to describe this action on the functor Conn(Hp
∨

). We are given a trivialized
R-Miura Oper

(DR ×G,d+ (p−1 + u(t))dt,DR × B,DR × B−)

The left action of x ∈ N(R) brings this Miura Oper to the Miura Oper

(DR ×G,d+ (p−1 + u(t))dt,DR × B, PB−,x)

where PB−,x is the B− reduction ofDR×G induced by the unique element x(t) ∈ N(R[[t]]) such
that PB−,x is preserved by ∇, or in other words, such that:

x(t) ·
(
d+ (p−1 + u(t))dt

)
∈ d+

(
p−1 + h⊗ R[[t]]

)
dt

Now, in order to re-trivialize (DR × G,∇, DR × B, PB−,x) into the form (DR × G,∇ ′, DR ×
B,DR × B−) we have to consider the isomorphism induced by x(t)−1. The connection is brought
to the form

x(t) ·
(
d+ (p−1 + u(t))dt

)
We proved the following: the action of x ∈ N(R) on u(t) ∈ h ⊗ R[[t]] is given by the only

(x · u)(t) ∈ h⊗ R[[t]] such that

d+ (p−1 + (x · u)(t))dt = x(t) ·
(
d+ (p−1 + u(t))dt

)
where x(t) ∈ N(R[[t]]) is the unique element such that x(0) = x and such that the right hand

side belongs to d+ (p−1 + h⊗ R[[t]])dt.

8.9.1 Infinitesimal action of n

We now study the infinitesimal action of n on this space. We will focus on the generators of n
given by the fixed root space decomposition ei ∈ gαi . Consider an ei ∈ n(C) ⊂ N(C[ε]) and an
element d + (p−1 + u(t))dt ∈ Conn(Hp∨

)(R). To calculate the action of ei we think as the latter
elements as belonging to Conn(Hp

∨

)(R).

Let xi(t) ∈ R[[t]] an element such that xi(0) = 1 and such that

[xi(t)ei, p−1 + u(t)] − ∂txi(t) ∈ h⊗ R[[t]]
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If we write u(t) =
∑
i ui(t)ω

∨
i where ui(t) ∈ R[[t]] and ω∨

i is defined by αj(ω∨
i ) = δij. The

equation reads as follows:

xi(t)hi − xi(t)ui(t)ei − ∂txi(t)ei ∈ h⊗ R[[t]]

So xi(t) must satisfy ∂txi(t) = −xi(t)ui(t) and therefore is uniquely determined by its value
on 0. In particular the following expression holds for xi(t).

xi(t) =
∑
n<0

xi,nt
−n−1 = exp

(∑
m<0

ui,m

m
t−m

)
(8.3)

Proposition 8.9.1. The unique element ei(t) ∈ N(R[[t]][ε0]) such that

ei(t) ·
(
d+ (p−1 + u(t))dt

)
∈ d+ (p−1 + h⊗ R[[t]])dt

Is x(t)ei.

Proof. Indeed the action of xi(t)ei ∈ N(R[[t]][ε]) is given by

xi(t)ei ·
(
d+ (p−1 + u(t))dt

)
= d+

(
Adxi(t)ei(p−1 + u(t))

)
dt− ε∂txi(t)eidt =

d+ (p−1 + u(t))dt+ ε
(
[xi(t)ei, p−1 + u(t)] − ∂txi(t)ei

)
dt

And by construction of xi(t) it belongs to the space d+(p−1+h⊗R[[t]][ε])dt as requested.

We now investigate the action of n on the ring of functions onMOpG(D)gen.
We look at the system of coordinates forMOpG(D)gen introduced in proposition 8.6.5. We are

now ready to see how ei ∈ n acts on such functions.

Proposition 8.9.2. The action of ei as a vector field overMOpG(D)gen is given by the following formula:

ei = −
∑

j=1,...l

aij
∑
n<0

xi,n
∂

∂bj,n
(8.4)

where xi,n is given by formula 8.3 making the substitution uj,n 7→ bj,n and it is a polynomial in the
coordinates bj,n.

Proof. We already now that the action of n is given by vector fields. Since a C[bi,n] basis for the
vector fields is given by the derivations ∂

∂bj,n
we obtain that

ei =
∑

j=1,...,l,n<0

(ei · bj,n)
∂

∂bj,n

and we can restrict ourselves to compute the action of ei on the coordinate functions bj,n. We
will compute the action of ei on the R points of the scheme, the following calculations provide
therefore the action of −ei on the ring of functions.

By definition the action of ei onMOpG(D)(R) is given by the formula

ei ·
(
d+ (p−1 + u(t))dt

)
= x(t)ei ·

(
d+ (p−1 + u(t))dt

)
= d+ (p−1 + u(t))dt+ ε

(
[x(t)ei, p−1 + u(t)] − ∂tx(t)ei

)
dt

= d+ (p−1 + u(t))dt+ εxi(t)hi
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Where the last equality follows from the fact that xi(t) is chosen in order to make [xi(t)ei, p−1+
u(t)]−∂txi(t)ei = [xi(t)ei, p−1] = xi(t)hi. Now by definition the action of ei on bj,n is computed
by evaluating this point with bj,n to obtain a R[ε] point of A1, taking the derivative with respect
to ε and finally evaluating at ε = 0.

bj,n

(
ei ·

(
d+ (p−1 + u(t))dt

))
= bj,n

(
d+ (p−1 + u(t))dt+ εxi(t)hidt) = uj,n + εαj(hi)xi,n

Then taking the derivative with respect to ε gives us exactly

ei · bj,n = −αj(hi)xi,n = aijxi,n

as required.

This description allows us to describe the algebra of functions on OpG(D) as the intersection
of the operators ei.

Theorem 8.9.1. The algebra of functions on the space of Opers on the discOpG(D) equals the intersection
of the kernels of the operators ei

C[OpG(D)] =
⋂

i=1,...,l

ker(ei)

Proof. SinceMOpG(D)gen is isomorphic to the trivial N-principal bundle over OpG(D). We have

C[OpG(D)] = C[MOpG(D)gen]
N = C[MOpG(D)gen]

n =
⋂

i=1,...,l

ker(ei)

where the last equality follows from the fact that the ei generates n while the other equalities
follow from the the fact MOpG(D)gen ' OpG(D) × N. Indeed N acts only on the second factor,
and hence also on the second factor of the decomposition

C[MOpG(D)gen] = C[OpG(D)]⊗ C[N]

The same is true for the action of n. Since the ring of invariant function for both actions is the ring
of constant functions the theorem is proved.

8.10 Computation of the character

Our last goal is to compute the character under the action of the operator L0 = t∂t of C[OpG(D)].
Consider the isomorphism MOpG(D)gen ' OpG(D) × N we introduced in proposition 8.8.2.
Recall that under this isomorphism N acts by left multiplication on the second factor. Always
under this isomorphism we have

C[MOpG(D)] = C[OpG(D)]⊗ C[N]

and the action ofN(C) on this ring of functions is only on the second factor. On the other hand
n(C) acts by derivations and acts like 0 on the first factor C[OpG(D)]⊗ 1. The grading operator L0
acts by derivations as well.

It is reasonable to think that taken coordinates for N yα such that eα · yα = 1 they must have
degree ht(α). We show this in detail:
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Proposition 8.10.1. The Operator L0 = −t∂t preserves the subalgebra C[N]. And acts like the derivation
induced by the adjoint action of p∨(1+ ε) ∈ H(C[ε]).

Proof. In order to do prove this proposition we keep considering the isomorphism of proposition
8.8.2.

Under this description consider the generic R-Miura Oper (DR×G,d+(p−1+v(t))dt,DR×B, x)
where x ∈ N(R) determines the unique B− reduction preserved by the connection. We view this
as an R[ε] generic Miura Oper, then applying the left action of t + εt amounts to changing the
coordinate in the connection but does not effect the B− reduction. Thus:

(t+εt)·(DR×G,d+(p−1+v(t))dt,DR×B, x) = (DR×G,d+
(
p−1(1+ε)+v(t+εt)(1+ε)

)
dt,DR×B, x)

To bring it again in the our canonical form we must change trivialization. It suffices to change
trivialization with the element p∨(1 + ε) ∈ H(C[ε]) ⊂ H(R[ε]). This brings the connection in the
form

p∨(1+ ε) ·
(
d+

(
p−1(1+ ε) + v(t+ εt)(1+ ε)

)
dt

)
= d+

(
p−1 +Adp∨(1+ε)

(
v(t)(1+ ε)

))
dt

This equality follows from the fact that (t + εt) ′′ = 0. Notice that since v(t) ∈ V ⊗ R[[t]] we
have that Adp∨(1+ε)

(
v(t)(1 + ε)

)
∈ V ⊗ R[[t]] so the connection is brought in the canonical form.

This change of trivialization brings the B− reduction in the B− reduction associated to the point
(p∨(1+ ε))x ∈ BB−(R[ε)/B−(R[ε]) its representative in N(R[ε]) is exactly

Adp∨(1+ε)(x) ∈ N(R[ε])

This proves the second part of the proposition, but it easily implies the first one.
Indeed since we showed that (t + εt) acts separately on the two factors of the product it is

evident that taking the derivative of a function constant on the first factor yields a function of the
same form.

Corollary 8.10.1. The character of the subalgebra C[N] under the operator L0 = −t∂t is given by the
following formula.

ch(C[N]) =
∏
α∈Φ+

1

1− qp∨(α)
=

l∏
i=1

di∏
ni=1

1

1− qni

Proof. Consider theH-equivariant isomorphism exp : n→ N, whereH acts on both spaces through
the adjoint action. We can restrict ourselves to computing the character of L0, which acts like an
element of H on the first space.

Consider a coordinate function on n, yβ : n→ A1. Then for any R-point of n,
∑
α rαeα we have

yβ
(
p∨(1+ ε) · (

∑
α

rαeα)
)
= yβ

(∑
α

rαeα + ε(
∑
α

ht(α)rαeα)
)
= rβ + εht(β)rβ

And we immediately get L0 · yβ = ht(β)yβ. The first part of the equation immediately follows
while the second equality follows from the discussion in the introduction about the exponents of
g.
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Corollary 8.10.2. The character for C[OpG(D)] under the action of L0 is given by the following formula.

ch(C[OpG(D)]) =

l∏
i=1

∏
n≥di+1

1

1− qn
(8.5)

Proof. This is a straightforward computation. We have ch(C[MOpG(D)gen] =
∏l
i=1

∏
n>0

1
1−qn

and
ch(C[MOpG(D)gen]) = ch(C[OpG(D)])ch(C[N])

And then we use the formula of corollary 8.10.1

8.11 Identification with the algebra of function on Opers

We are now ready to prove theorem 4.6.1.
Consider the isomorphism of theorem 8.7.1.

π0(
Lg)→ C[MOpG(D)gen]

Recall that we already proved in Proposition 6.2.1 that the center of the vertex algebra injec-
tively maps in π0. Moreover we showed in Chapter ‘Screening Operators’ that

ζ(Lg) ⊂
⋂
i

ker(Vi)

lies in the intersection of the kernels of the screening operators. But under the isomorphism
π0(

Lg) = C[MOpG(D)], by comparing formulas in Proposition 7.5.3 and 8.4. We get that Vi = −ei,
thus

ζ(Lg) ⊂
⋂
i

ker(Vi) =
⋂
i

ker(ei) = C[OpG(D)]

But we also computed the characters of both spaces under the action of L0, and they are indeed
equal.

Theorem 8.11.1. The center of the vertex algebra ζ(g) is isomorphic in a DerO equivariant way to the
algebra of regular functions on the space of LG Opers on the disc: OpLG(D).

Proof. The embeddings presented above

ζ(Lg) ⊂ C[MOpG(D)gen] C[OpG(D)] ⊂ C[MOpG(D)gen]

are DerO equivariant by construction. Therefore the embedding

ζ(Lg) ⊂ C[OpG(D)]

is DerO equivariant as well. By comparison of formulas 6.6.2 and 8.5. We get that the characters
of these spaces under the action of L0 are indeed equal. Since the morphism is DerO equivariant
we obtain that

ζ(Lg) = C[OpG(D)]

Making the substitutions Lg 7→ g and G 7→L Gwe conclude the proof.
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